Phylogenetic study of Indian Collembolan: an evaluation in Uttar Pradesh

Authors

  • Harish Chandra P.G. Department of Zoology, Ganjdundwara P.G. College, Ganjdundwara, Etah 207242, India.
  • Sher Singh P.G. Department of Zoology, Ganjdundwara P.G. College, Ganjdundwara, Etah 207242, India.
  • H. N. Sharma Department of Environmental Toxicology, Dr. B.R. Ambedkar University, Agra 282002, India.

Keywords:

Springtails, Collembola, Phylogeny, Ventral tube, Retinaculum, Furcula

Abstract

Springtails (Collembola) from the largest of the three lineages of modern hexapods that are no longer considered insects (the other two are the Protura and Diplura). Although the three orders are sometimes grouped together in a class called Entognatha because they have internal mouthparts, they do not appear to be any more closely related to one another than they all are to insects, which have external mouthparts. Collembolans are omnivorous, free-living organisms that prefer moist conditions. They do not directly engage in the decomposition of organic matter but contribute to it indirectly through the fragmentation of organic matter and the control of soil microbial communities. The word "Collembola" is from the ancient Greek "Glue" and "Peg"; this name was given due to the existence of the collophore, which was previously thought to stick to surfaces in order to stabilize the insect. It is necessary to study the phylogeny of collembolans to explore evolutionary status.

Downloads

Download data is not yet available.

References

Baum, D.A. & Larson, A. (1991). Adaptation Reviewed: A Phylogenetic Methodology for Studying Character Macroevolution. Syst. Biol., 40(1): 1–18. https://doi.org/10.1093/sysbio/40.1.1.

Brooks, D.R. & McLennan, D.A. (1991). Phylogeny, Ecology, and Behavior: A Research Program in Comparative Biology. The University of Chicago Press, Chicago, pp. 434.

Brown, R.W. (1956). Composition of Scientific Words: A Manual of Methods and a Lexicon of Materials for the Practice of Logotechnics. Smithsonian Institution Press. Washington, D.C. pp. 882.

Carpenter, J.M. (1989). Testing Scenarios: Wasp Social Behavior. Cladistics, 5(2): 131–144. https://doi.org/10.1111/j.1096-0031.1989.tb00560.x.

Chang, B.S. & Donoghue, M.J. (2000). Recreating ancestral proteins. Trends Ecol. Evol., 15(3): 109–114. https://doi.org/10.1016/s0169-5347(99)01778-4.

Coddington, J.A. (1988). Cladistic Tests of Adaptational Hypotheses. Cladistics, 4(1): 3–22. https://doi.org/10.1111/j.1096-0031.1988.tb00465.x.

Cunningham, C.W., Omland, K.E. & Oakley, T.H. (1998). Reconstructing ancestral character states: a critical reappraisal. Trends Ecol. Evol., 13(9): 361–366. https://doi.org/10.1016/S0169-5347(98)01382-2.

Donoghue, M.J. (1989). Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution, 43(6): 1137–1156. https://doi.org/10.1111/j.1558-5646.1989.tb02565.x.

Donoghue, M.J. & Sanderson, M.J. (1992). The Suitability of Molecular and Morphological Evidence in Reconstructing Plant Phylogeny. In: Soltis, P.S., Soltis, D.E. & Doyle J.J. (eds.), Molecular Systematics of Plants. Chapman and Hall, N.Y. pp. 340-368. https://doi.org/10.1007/978-1-4615-3276-7_15.

Doolittle, W.F. (1999). Phylogenetic classification and the universal tree. Science, 284(5423): 2124–2129. https://doi.org/10.1126/science.284.5423.2124.

Edwards, A.W.F. & Cavalli-Sforza, L.L. (1964). Reconstruction of evolutionary trees. In: Heywood, V.H. & McNeill, J. (eds), Phenetic and Phylogenetic Classification. Systamics Association: London. pp. 67–76.

Eldredge, N. & Cracraft, J. (1980). Phylogenetic Patterns and the Evolutionary Process. Method and Theory in Comparative Biology. New York: Columbia University Press. pp. 349.

Farrell, B.D., Mitter, C. & Futuyma, D.J. (1992). Diversification at the Insect-Plant Interface: Insights from phylogenetics. BioScience, 42(1): 34–42. https://doi.org/10.2307/1311626.

Farris, J. (1970). Methods for Computing Wagner Trees. Syst. Zool., 19(1): 83-92. https://doi.org/10.2307/2412028.

Farris, J.S. (1983). The logical basis of phylogenetic analysis. In: Platnick, N.I. & Funk, V.A. (eds.), Advances in Cladistics, volume 2: Proceedings of the second meeting of the Willi Hennig Society. Columbia University Press, New York, pp. 7–36.

Felsenstein, J. (1979). Alternative Methods of Phylogenetic Inference and their Interrelationship. Syst. Biol., 28(1): 49–62. https://doi.org/10.1093/sysbio/28.1.49.

Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat., 125(1): 1–15 . http://dx.doi.org/10.1086/284325.

Felsenstein, J. (1988a). Phylogenies from molecular sequences: inference and reliability. Annu. Rev. Genet., 22: 521–565. https://doi.org/10.1146/annurev.ge.22.120188.002513.

Felsenstein, J. (1988b). Phylogenies and Quantitative Characters. Annu. Rev. Ecol. Syst., 19(1): 445–471. https://doi.org/10.1146/annurev.es.19.110188.002305.

Felsenstein, J. (2004). Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, Massachusetts.

Fink, W.L. (1982). The conceptual relationship between Ontogeny and Phylogeny. Paleobiology, 8(3): 254–264. https://doi.org/10.1017/S0094837300006977.

Fitch, W.M. (1971). Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Syst. Biol., 20(4): 406–416. https://doi.org/10.1093/sysbio/20.4.406.

Futuyma, D.J. (1988). Sturm und Drang and the Evolutionary Synthesis. Evolution, 42(2): 217–226. https://doi.org/10.1111/j.1558-5646.1988.tb04126.x.

Futuyma, D.J. & McCafferty, S.S. (1990). Phylogeny and the Evolution of host plant associations in the leaf beetle Genus Ophraella (Coleoptera, Chrysomelidae). Evolution, 44(8): 1885–1913. https://doi.org/10.1111/j.1558-5646.1990.tb04298.x.

Gittleman, J.L. (1988). The comparative approach in ethology: Aims and limitations. In: Bateson, P.P.G. & Klopfer, P.H. (eds.), Perspectives in Ethology, vol. 8, New York: Plenum press. pp. 55–83.

Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E. & Matsuda, G. (1979). Fitting the Gene Lineage into its Species Lineage, a Parsimony Strategy Illustrated by Cladograms Constructed from Globin Sequences. Syst. Biol., 28(2): 132–163. https://doi.org/10.1093/sysbio/28.2.132.

Graur, D. & Li, W.-H. (1999) Fundamentals of Molecular Evolution. 2nd Edition. Sinauer Associates, Sunderland, Massachusetts.

Harvey, P.H., Leigh Brown, A.J. & Maynard, S.J. (1995). New uses for new phylogenies: editors’ introduction. Philos. Trans. R. Soc. London, Ser. B, 349(1327): 3–4. https://doi.org/10.1098/rstb.1995.0083.

Harvey, P.H. & Pagel, M.D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press, pp. 239.

Hennig, W. (1966). Phylogenetic Systematics. University of Illinois Press, Urbana.

Hillis, D.M. (1987). Molecular versus Morphological approaches to Systematics. Annu. Rev. Ecol. Syst., 18(1): 23–42. https://doi.org/10.1146/annurev.es.18.110187.000323.

Hillis, D.M., Bull, J.J., White, M.E., Badgett, M.R. & Molineux, I.J. (1992). Experimental phylogenetics: generation of a known phylogeny. Science, 255(5044): 589–592. https://doi.org/10.1126/science.1736360.

Hillis, D.M., Huelsenbeck, J.P. & Cunningham, C.W. (1994). Application and accuracy of molecular phylogenies. Science, 264(5159): 671–677. https://doi.org/10.1126/science.8171318.

Hopkin, S.P. (1997). Biology of Springtails (Insecta: Collembola). Oxford University Press. pp. 330.

Huelsenbeck, J.P. & Rannala, B. (1997). Phylogenetic Methods Come of Age: Testing Hypotheses in an Evolutionary Context. Science, 276(5310): 227–232. https://doi.org/10.1126/science.276.5310.227.

Huelsenbeck, J.P. & Crandall, K.A. (1997). Phylogeny Estimation and Hypothesis Testing Using Maximum Likelihood. Annu. Rev. Ecol. Syst., 28(1): 437–466. https://doi.org/10.1146/annurev.ecolsys.28.1.437.

Huey, R.B. & Bennett, A.F. (1987). Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution, 41(5): 1098–1115. https://doi.org/10.1111/j.1558-5646.1987.tb05879.x.

Koshi, J.M. & Goldstein, R.A. (1996). Probabilistic reconstruction of ancestral protein sequences. J. Mol. Evol., 42(2): 313–320. https://doi.org/10.1007/BF02198858.

Lauder, G.V. (1982). Historical biology and the problem of design. J. Theor. Biol., 97(1): 57–67. https://doi.org/10.1016/0022-5193(82)90276-4.

Maddison, D.R. (1994). Phylogenetic Methods for Inferring the Evolutionary History and Processes of Change in Discretely Valued Characters. Annu. Rev. Entomol., 39(1): 267–292. https://doi.org/10.1146/annurev.en.39.010194.001411.

Maddison, D.R. & Maddison, W.P. (2000). MacClade 4: Analysis of Phylogeny and Character Evolution. Sinauer Associates, Inc., Sunderland, MA.

Maddison, D.R., Ruvolo, M. & Swofford, D.L. (1992). Geographic Origins of Human Mitochondrial DNA: Phylogenetic Evidence from Control Region Sequences. Syst. Biol., 41(1): 111–124. https://doi.org/10.1093/sysbio/41.1.111.

Maddison, W.P. (1990). A method for testing the correlated evolution of two binary characters: are gains or losses concentrated on certain branches of a phylogenetic tree? Evolution, 44(3): 539–557. https://doi.org/10.1111/j.1558-5646.1990.tb05937.x.

Maddison, W.P. (1995). Calculating the Probability Distributions of Ancestral States Reconstructed by Parsimony on Phylogenetic Trees. Syst. Biol., 44(4): 474–481. https://doi.org/10.1093/sysbio/44.4.474.

Maddison, W.P. (1996). Molecular approaches and the growth of phylogenetic biology. In: Ferraris, J.D. & Palumbi, S.R. (Eds.), Molecular Zoology: Advances, Strategies, and Protocols. Wiley-Liss, New York, pp. 47–63.

Maddison, W.P. (1997). Gene Trees in Species Trees. Syst. Biol., 46(3): 523–536. https://doi.org/10.1093/sysbio/46.3.523.

Maddison, W.P. & Maddison, D.R. (1992). MacClade version 3: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MA.

Merritt, R.W., Cummins, K.W. & Berg, M.B. (eds.) (2008). An Introduction to the Aquatic Insects of North America. 4th edn., Kendall/Hunt Publishing Company, Dubuque.

Mitter, C., Farrell, B. & Wiegmann, B. (1988). The Phylogenetic Study of Adaptive Zones: Has Phytophagy Promoted Insect Diversification? Am. Nat., 132(1): 107-128. https://doi.org/10.1086/284840.

Morrison, D.A. (1996). Phylogenetic tree-building. Int. J. Parasitol., 26(6): 589–617. https://doi.org/10.1016/0020-7519(96)00044-6.

Nelson, G. & Platnick, N.I. (1981). Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York.

O'Hara, R.J. (1988). Homage to Clio, or, Toward an Historical Philosophy for Evolutionary Biology. Syst. Biol., 37(2): 142–155. https://doi.org/10.2307/2992272.

Page, R.D.M. & Holmes, E.C. (1998). Molecular evolution: A phylogenetic approach. Blackwell Science, Oxford.

Pagel, M. (1994). Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B Biol. Sci., 255(1342): 37–45. https://doi.org/10.1098/rspb.1994.0006

Pagel, M. (1997). Inferring evolutionary processes from phylogenies. Zool. Scr., 26(4): 331–348. https://doi.org/10.1111/j.1463-6409.1997.tb00423.x.

Pagel, M. (1999a). Inferring the historical patterns of biological evolution. Nature, 401: 877–884. https://doi.org/10.1038/44766.

Pagel, M. (1999b). The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies. Syst. Biol., 48(3): 612–622. https://doi.org/10.1080/106351599260184.

Penny, D., Hendy, M.D. & Steel, M.A. (1992). Progress with methods for constructing evolutionary trees. Trends Ecol. Evol., 7(3): 73–79. https://doi.org/10.1016/0169-5347(92)90244-6.

Borror, D.J., White, R.E. & Peterson, R.T. (1998). A Field Guide to Insects: America North of Mexico. A Peterson Field Guide. Houghton Mifflin Co.

Ridley, M. (1983). The Explanation of Organic Diversity: The Comparative Method and Adaptations for Mating. Clarendon Press, Oxford.

Sessions, S.K. & Larson, A. (1987). Developmental Correlates of Genome Size in Plethodontid Salamanders and their Implications for Genome Evolution. Evolution, 41(6): 1239–1251. https://doi.org/10.1111/j.1558-5646.1987.tb02463.x.

Sillén-Tullberg, B. (1988). Evolution of Gregariousness in Aposematic Butterfly Larvae: A Phylogenetic Analysis. Evolution, 42(2): 293–305. https://doi.org/10.1111/j.1558-5646.1988.tb04133.x.

Steel, M. & Penny, D. (2000). Parsimony, Likelihood, and the Role of Models in Molecular Phylogenetics. Mol. Biol. Evol., 17(6): 839–850. https://doi.org/10.1093/oxfordjournals.molbev.a026364.

Swofford, D.L. & Maddison, W.P. (1992). Parsimony, character-state reconstructions, and evolutionary inferences. In: Mayden, R.L. (ed.), Systematics, Historical Ecology, and North American Freshwater Fishes, Stanford University Press, Stanford, pp. 186–223.

Swofford, D.L. & Olsen, G.J. (1990). Phylogeny reconstruction. In: Hillis, D.M. & Moritz, C. (eds.), Molecular Systematics, Sinauer Associates, Sunderland, MA, pp. 411–501.

Swofford, D.L., Olsen, G.J., Waddell, P.J. & Hillis, D.M. (1996). Phylogenetic Inference. In: Hillis, D.M., Moritz, C. & Mable, B.K. (eds.), Molecular Systematics, 2nd ed., Sinauer Associates, Sunderland, MA. pp. 407-514.

Tuffley, C. & Steel, M. (1997). Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bull. Math. Biol., 59(3): 581–607. https://doi.org/10.1007/BF02459467.

Wanntorp, H., Brooks, D., Nilsson, T., Nylin, S., Ronquist, F., Stearns, S. & Wedell, N. (1990). Phylogenetic Approaches in Ecology. Oikos, 57(1): 119-132. https://doi.org/10.2307/3565745.

Wiley, E.O. (1981). Phylogenetics: The theory and practice of Phylogenetic Systematics. Wiley Interscience, New York, pp. 439.

Yang, Z. (1993). Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol. Biol. Evol., 10(6): 1396–1401. https://doi.org/10.1093/oxfordjournals.molbev.a040082.

Yang, Z. (1994a). Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol., 39(3): 306–314. https://doi.org/10.1007/BF00160154.

Yang, Z. (1994b). Estimating the pattern of nucleotide substitution. J. Mol. Evol., 39(1): 105–111. https://doi.org/10.1007/BF00178256.

Yang, Z., Kumar, S. & Nei, M. (1995). A new method of inference of ancestral nucleotide and amino acid sequences. Genetics, 141(4): 1641–1650.

Downloads

Abstract views: 39 / PDF downloads: 12

Published

2017-01-01

How to Cite

Chandra, H., Singh, S., & Sharma, H. N. (2017). Phylogenetic study of Indian Collembolan: an evaluation in Uttar Pradesh. Advances in BioScience, 8(1), 30–35. Retrieved from https://journals.sospublication.co.in/ab/article/view/215

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>