Potential of Marine Algae (Seaweeds) in the Biosynthesis of Nanoparticles and their Biomedical Applications
Keywords:
Marine algae, Antimicrobial Activities, Anticancer, BionanoparticlesAbstract
Since 3000 BC, seaweeds have played an important role in human life due to their nutritional and therapeutic properties. In recent years the ability of seaweeds to biosynthesize nanoparticles has increased their potential in a variety of industrial, agricultural, and medical applications. In this review, we attempted to shed some light on the various traditional applications of seaweeds and the potential of biosynthesized nanoparticles, with a focus on the wide medical applications of biosynthesized nanoparticles in modern life.
Downloads
References
Qin, Y. (2018). Seaweed Bioresources. In: Qin, Y. (Ed.), Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets. Academic Press, Elsevier Inc., pp. 3-24. https://doi.org/10.1016/B978-0-12-813312-5.00001-7.
Dawson, E.Y. (1966). Marine botany: An introduction. Holt, Rinehart and Winston Inc., New York, pp. 371.
MacArtain, P., Gill, C.I., Brooks, M., Campbell, R. & Rowland, I.R. (2007). Nutritional value of edible seaweeds. Nutr. Rev., 65: 535–543. https://doi.org/10.1301/nr.2007.dec.535-543.
Kolanjinathan, K., Ganesh, P. & Saranraj, P. (2014). Pharmacological Importance of Seaweeds: A Review. World J. Fish Marine Sci., 6(1): 1–15.
Silva, G.A. (2004). Introduction to nanotechnology and its applications to medicine. Surg. Neurol., 61(3): 216–220. https://doi.org/10.1016/j.surneu.2003.09.036.
Mughal, B., Zaidi, S.Z.J., Zhang, X. & Hassan, S.U. (2021). Biogenic Nanoparticles: Synthesis, Characterisation and Applications. Appl. Sci., 11(6): 2598. https://doi.org/10.3390/app11062598.
Barhoum, A. (2016). History and development of nanoparticles and nanostructured materials. Chem. Sci. J., 7(3 Suppl): 72. http://dx.doi.org/10.4172/2150-3494.C1.006.
Daniel, M.C. & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104(1): 293–346. https://doi.org/10.1021/cr030698+.
Francisci, A. (1618). Panacea Aurea-Auro Potabile. Hamburg, Bibliopolio Frobeniano, pp. 205.
Kunckels, J. (1676). Nuetliche Observationes oder Anmerkungen von Auro und Argento Potabili. Schutzens, Hamburg.
Savage, G. (1975). Glass and Glassware. Octopus Book, London.
Helcher, H.H. (1718). Aurum Potabile oder Gold Tinstur. Johann Herbord Klossen, Breslau und Leipzig.
Fulhame, Mrs. (1794). An Essay on Combustion with a View to a New Art of Dying and Painting. J. Cooper, London.
Faraday, M. (1857). Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc., 147: 145–181. http://doi.org/10.1098/rstl.1857.0011.
Madkour, L.H. (2018) Ecofriendly green biosynthesized of metallic nanoparticles: Bio-reduction mechanism, characterization and pharmaceutical applications in biotechnology industry. Glob. Drugs Terap., 3(1): 1-11. https://doi.org/10.15761/GDT.1000144.
Slepička, P., Slepičková Kasálková, N., Siegel, J., Kolská, Z. & Švorčík, V. (2019). Methods of Gold and Silver Nanoparticles Preparation. Materials, 13(1): 1. https://doi.org/10.3390/ma13010001.
Habibullah, G., Viktorova, J. & Ruml, T. (2021). Current Strategies for Noble Metal Nanoparticle Synthesis. Nanoscale Res. Lett., 16: 47. https://doi.org/10.1186/s11671-021-03480-8.
Dikshit, P.K., Kumar, J., Das, A.K., Sadhu, S., Sharma, S., Singh, S., Gupta, P.K. & Kim, B.S. (2021). Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts, 11(8): 902. https://doi.org/10.3390/catal11080902.
Patil, S. & Chandrasekaran, R. (2020). Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol., 18: 67. https://doi.org/10.1186/s43141-020-00081-3.
Baig, N., Kammakakam, I. & Falath, W. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv., 2(6): 1821–1871. https://doi.org/10.1039/D0MA00807A.
Uzair, B., Liaqat, A., Iqbal, H., Menaa, B., Razzaq, A., Thiripuranathar, G., Fatima Rana, N. & Menaa, F. (2020). Green and Cost-Effective Synthesis of Metallic Nanoparticles by Algae: Safe Methods for Translational Medicine. Bioengineering, 7(4): 129. https://doi.org/10.3390/bioengineering7040129.
Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, Á., Hernández-González, M.C., Pereda, S.V., Gomez-Pinchetti, J.L., Golberg, A., Tadmor-Shalev, N. & Critchley, A.T. (2017). Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol., 52(4): 391–406. https://doi.org/10.1080/09670262.2017.1365175.
Doty, M.S. (1979). Status of marine agronomy, with special reference to the tropics. In: Jensen, A. & Stein, J.R. (Eds.), Proceedings of the 9th International Seaweed Symposium, Santa Barbara, USA, Science Press, Princeton, pp. 35-58.
Wood, C.G. (1974). Seaweed extracts: a unique ocean resource. J. Chem. Educ., 51(7): 449–452. https://doi.org/10.1021/ed051p449.
Porterfield, W.M. (1922). References to the Algae in the Chinese Classics. Bulletin of the Torrey Botanical Club, 49(10): 297–300. https://doi.org/10.2307/2480100.
Xia, B. & Abbott, I.A. (1987). Edible seaweeds of China and their place in the Chinese diet. Econ. Bot., 41(3): 341–353. https://doi.org/10.1007/BF02859049.
Kremer, B.P. (1980). Marine Algae in Pharmaceutical Science. Phycologia, 19(2): 168–169. https://doi.org/10.2216/i0031-8884-19-2-168.1.
Pati, M.P., Sharma, S.D., Nayak, L. & Panda, C.R. (2016). Uses of seaweed and its application to human welfare: A review. Int. J. Pharm. Pharm. Sci., 8(10): 12–20. https://doi.org/10.22159/ijpps.2016v8i10.12740.
Lomartire, S., Marques, J.C. & Gonçalves, A.M.M. (2021). An Overview to the Health Benefits of Seaweeds Consumption. Mar. Drugs, 19(6): 341. https://doi.org/10.3390/md19060341.
Levine, I. (2016). Algae: A Way of Life and Health. In: Fleurence, J. & Levine, I. (Eds.), Seaweed in Health and Disease Prevention. Academic Press, Elsevier Inc., pp. 1-5. https://doi.org/10.1016/B978-0-12-802772-1.00001-4.
Pooja, S. (2014). Algae used as Medicine and Food - A Short Review. J. Pharm. Sci. Res., 6(1): 33-35.
Richardson, J.S. (1993). Free radicals in the genesis of Alzheimer's disease. Ann. N. Y. Acad. Sci., 695: 73–76. https://doi.org/10.1111/j.1749-6632.1993.tb23031.x.
Jiménez-Escrig, A. & Sánchez-Muniz, F.J. (2000). Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res., 20(4): 585–598. https://doi.org/10.1016/S0271-5317(00)00149-4.
Dhargalkar, V.K. & Pereira, N. (2005). Seaweed: Promising plant of the millennium. Sci. Cult., 71: 60–66.
Costa, M., Cardoso, C., Afonso, C., Bandarra, N. M. & Prates, J.A.M. (2021). Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. J. Anim. Physiol. Anim. Nutr., 105(6): 1075–1102. https://doi.org/10.1111/jpn.13509.
Kaladharan, P. (2006). Animal feed from seaweeds. Proceedings of the national training workshop on seaweed farming and processing for food. Kilakarai, India. pp. 83-90.
Min, B.R., Parker, D., Brauer, D., Waldrip, H., Lockard, C., Hales, K., Akbay, A. & Augyte, S. (2021). The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim. Nutr., 7(4): 1371–1387. https://doi.org/10.1016/j.aninu.2021.10.003.
Morais, T., Inácio, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L. & Bahcevandziev, K. (2020). Seaweed Potential in the Animal Feed: A Review. J. Mar. Sci. Eng., 8(8): 559. https://doi.org/10.3390/jmse8080559.
Gomez-Zavaglia, A., Lage, M.A.P., Jimenez-Lopez, C., Mejuto, J.C. & Simal-Gandara, J. (2019). The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value. Antioxidants, 8(9): 406. https://dx.doi.org/10.33902Fantiox8090406.
Arunkumar, K., Raja, R., Kumar, V.B.S., Joseph, A., Shilpa, T. & Carvalho, I.S. (2021). Antioxidant and cytotoxic activities of sulfated polysaccharides from five different edible seaweeds. J. Food Meas. Charact., 15(1): 567–576. https://doi.org/10.1007/s11694-020-00661-4.
Cardoso, S.M., Carvalho, L.G., Silva, P.J., Rodrigues, M.S. & Pereira, L. (2014). Bioproducts from Seaweeds: A Review with Special Focus on the Iberian Peninsula. Curr. Org. Chem., 18(7): 896-917. https://dx.doi.org/10.2174/138527281807140515154116.
Hughes, A.D., Kelly, M.S., Black, K.D. & Stanley, M.S. (2012). Biogas from Macroalgae: is it time to revisit the idea? Biotechnol. Biofuels, 5: 86. https://doi.org/10.1186/1754-6834-5-86.
Deng, C., Lin, R., Kang, X., Wu, B., O’Shea, R. & Murphy, J.D. (2020). Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis. Renewable Sustainable Energy Rev., 128: 109895. https://doi.org/10.1016/j.rser.2020.109895.
Souza, P.O., Ferreira, L.R., Pires, N.R.X., Filho, P.J.S., Duarte, F.A., Pereira, C.M.P. & Mesko, M.F. (2012). Algae of economic importance that accumulate cadmium and lead: a review. Rev. Bras. Farmacogn., 22: 825–837. https://doi.org/10.1590/S0102-695X2012005000076.
Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N. & Nasri, N.S. (2018). Treatment of Wastewater Using Seaweed: A Review. Int. J. Environ. Res. Public Health, 15(12): 2851. https://doi.org/10.3390/ijerph15122851.
Vijayan, S.R., Santhiyagu, P., Ramasamy, R., Arivalagan, P., Kumar, G., Ethiraj, K. & Ramaswamy, B.R. (2016). Seaweeds: A resource for marine bionanotechnology. Enzyme Microb. Technol., 95: 45–57. https://doi.org/10.1016/j.enzmictec.2016.06.009.
Patra, J.K. & Baek, K.-H. (2014). Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater., 2014: 417305. https://doi.org/10.1155/2014/417305.
de Morais, M.G., da Silva Vaz, B., de Morais, E.G. & Costa, J.A.V. (2015). Biologically Active Metabolites Synthesized by Microalgae. Biomed Res. Int., 2015: 835761. https://doi.org/10.1155/2015/835761.
Michalak, I. & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Eng. Life Sci., 15(2): 160-176. https://doi.org/10.1002/elsc.201400191.
Alassali, A., Cybulska, I., Brudecki, G.P., Farzanah, R. & Thomsen, M.H. (2016). Methods for Upstream Extraction and Chemical Characterization of Secondary Metabolites from Algae Biomass. Adv. Tech. Biol. Med., 4(1): 163. https://doi.org/10.4172/2379-1764.1000163.
Khanna, P., Kaur, A. & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods, 163: 105656. https://doi.org/10.1016/j.mimet.2019.105656.
Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I. & Prasad, R. (2015). Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties. Langmuir, 31(42): 11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081.
Mahdavi, M., Namvar, F., Ahmad, M.B. & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18(5): 5954–5964. https://doi.org/10.3390/molecules18055954.
Ponnuchamy, K. & Jacob, J.A. (2016). Metal nanoparticles from marine seaweeds – a review. Nanotechnol. Rev., 5(6): 589–600. https://doi.org/10.1515/ntrev-2016-0010.
Kumar, P., Govindaraju, M., Senthamilselvi, S. & Premkumar, K. (2013). Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf. B Biointerfaces, 103: 658–661. https://doi.org/10.1016/j.colsurfb.2012.11.022.
Rajesh, S., Raja, D.P., Rathi, J.M. & Sahayaraj, K. (2012). Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethylacetate extract and its activity against Xanthomonas campestris pv. malvacearum. J. Biopest., 5: 119-128.
Suriya, J., Bharathi Raja, S., Sekar, V. & Rajasekaran., R. (2012). Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. Afr. J. Biotechnol., 11(58): 12192–12198. https://doi.org/10.5897/AJB12.452.
Kannan, R.R.R., Stirk, W.A. & Van Staden, J. (2013). Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S. Afr. J. Bot., 86: 1–4. https://doi.org/10.1016/j.sajb.2013.01.003.
Yousefzadi, M., Rahimi, Z. & Ghafori, V. (2014). The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mater. Lett., 137: 1–4. https://doi.org/10.1016/j.matlet.2014.08.110.
De Clerck, O., Bogaert, K.A. & Leliaert, F. (2012). Diversity and Evolution of Algae: Primary Endosymbiosis. Adv. Bot. Res., 64: 55-86. https://doi.org/10.1016/B978-0-12-391499-6.00002-5.
Kumar, P., Senthamilselvi, S., Lakshmipraba, A., Premkumar, K. & Govindaraju, M. (2012). Efficacy of bio-synthesized silver nanoparticles using Acanthophora spicifera to encumber biofilm formation. Dig. J. Nanomater. Biostructures, 7(2): 511–522.
Kumar, P., Senthamil Selvi, S. & Govindaraju, M. (2013). Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl. Nanosci., 3(6): 495–500. https://doi.org/10.1007/s13204-012-0151-3.
Vivek, M., Kumar, P.S., Steffi, S. & Sudha, S. (2011). Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and their Antifungal Effects. Avicenna J. Med. Biotechnol., 3(3): 143–148.
Ganapathy Selvam, G. & Sivakumar, K. (2015). Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux. Appl. Nanosci., 5(5): 617–622. https://doi.org/10.1007/s13204-014-0356-8.
Roni, M., Murugan, K., Panneerselvam, C., Subramaniam, J., Nicoletti, M., Madhiyazhagan, P., Dinesh, D. et al. (2015). Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Environ. Saf., 121: 31–38. https://doi.org/10.1016/j.ecoenv.2015.07.005.
Abdel-Raouf, N., Al-Enazi, N.M. & Ibraheem, I.B.M. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian J. Chem., 10: S3029–S3039. https://doi.org/10.1016/j.arabjc.2013.11.044.
El Kassas, H.Y. & Attia, A.A. (2014). Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac. J. Cancer Prev., 15(3): 1299–1306. https://doi.org/10.7314/apjcp.2014.15.3.1299.
El-Kassas, H.Y. & El-Sheekh, M.M. (2014). Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac. J. Cancer Prev., 15(10): 4311–4317. https://doi.org/10.7314/apjcp.2014.15.10.4311.
Khanehzaei, H., Ahmad, M.B., Shameli, K. & Ajdari, Z. (2014). Synthesis and characterization of Cu@Cu2O core shell nanoparticles prepared in seaweed Kappaphycus alvarezii Media. Int. J. Electrochem. Sci., 9: 8189-8198.
Hakim, M.M. & Patel, I.C. (2020). A review on phytoconstituents of marine brown algae. Futur. J. Pharm. Sci., 6: 129. https://doi.org/10.1186/s43094-020-00147-6.
Singaravelu, G., Arockiamary, J.S., Kumar, V.G. & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B: Biointerfaces, 57(1): 97–101. https://doi.org/10.1016/j.colsurfb.2007.01.010.
Govindaraju, K., Kiruthiga, V., Kumar, V.G. & Singaravelu, G. (2009). Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J. Nanosci. Nanotechnol., 9(9): 5497–5501. https://doi.org/10.1166/jnn.2009.1199.
Shanmugam, N., Rajkamal, P., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G. & Sundaramanickam, A. (2014). Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl. Nanosci., 4(7): 881–888. https://doi.org/10.1007/s13204-013-0271-4.
Devi, J.S., Bhimba, B.V. & Peter, D.M. (2013). Production of Biogenic Silver Nanoparticles using Sargassum longifolium and its applications. Indian J. Mar. Sci., 42(1): 125–130.
Jegadeeswaran, P., Shivaraj, R. & Venckatesh, R. (2012). Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Digest J. Nanomater. Biostruct., 7(3): 991-998.
Kumar, P., Selvi, S.S., Prabha, A.L., Selvaraj, M., Rani, L.M., Suganthi, P., Devi, B.S. & Govindaraju, M. (2012). Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from Sargassum ilicifolium. Digest J. Nanomater. Biostruct., 7(4): 1447–1455.
Kumar, P., Selvi, S.S., Prabha, A.L., Kumar, K.P., Ganeshkumar, R.S. & Govindaraju, M. (2012). Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its anti-bacterial activity. Nano Biomed. Eng., 4(1): 12-16. http://dx.doi.org/10.5101/nbe.v4i1.p12-16.
Stalin Dhas, T., Ganesh Kumar, V., Stanley Abraham, L., Karthick, V. & Govindaraju, K. (2012). Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 99: 97–101. https://doi.org/10.1016/j.saa.2012.09.024.
Thangaraju, N., Venkatalakshmi, R.P., Chinnasamy, A. & Kannaiyan, P. (2012). Synthesis of silver nanoparticles and the antibacterial and anticancer activities of the crude extract of Sargassum polycystum c. Agardh. Nano Biomed. Eng., 4(2): 89-94. http://dx.doi.org/10.5101/nbe.v3i1.p89-94.
Nagarajan, S. & Arumugam Kuppusamy, K. (2013). Extracellular synthesis of zinc oxide nanoparticle using seaweeds of Gulf of Mannar, India. J. Nanobiotechnology, 11: 39. https://doi.org/10.1186/1477-3155-11-39.
Rajeshkumar, S., Malarkodi, C., Gnanajobitha, G., Paulkumar, K., Vanaja, M., Kannan, C. & Annadurai, G. (2013). Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J. Nanostruct. Chem., 3(1): 1–7. https://doi.org/10.1186/2193-8865-3-44.
Vijayan, S.R., Santhiyagu, P., Singamuthu, M., Ahila, N.K., Jayaraman, R. & Ethiraj, K. (2014). Synthesis and Characterization of Silver and Gold Nanoparticles Using Aqueous Extract of Seaweed, Turbinaria conoides, and their Antimicrofouling Activity. Sci. World J., 2014: 938272. https://doi.org/10.1155/2014/938272.
Arockiya Aarthi Rajathi, F., Parthiban, C., Ganesh Kumar, V. & Anantharaman, P. (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim. Acta A, Mol. Biomol. Spectrosc., 99: 166–173. https://doi.org/10.1016/j.saa.2012.08.081.
Prasad, T.N.V., Kambala, V.S.R. & Naidu, R. (2013). Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J. Appl. Phycol., 25(1): 177–182. https://doi.org/10.1007/s10811-012-9851-z.
Shiny, P.J., Mukherjee, A. & Chandrasekaran, N. (2013). Marine algae mediated synthesis of the silver nanoparticles and its antibacterial efficiency. Int. J. Pharm. Pharm. Sci., 5(2): 239–241.
Shiny, P.J., Mukherjee, A. & Chandrasekaran, N. (2014). Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess Biosyst. Eng., 37(6): 991–997. https://doi.org/10.1007/s00449-013-1069-1.
Singh, M., Kalaivani, R., Manikandan, S., Sangeetha, N. & Kumaraguru, A.K. (2013). Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl. Nanosci., 3(2): 145–151. https://doi.org/10.1007/s13204-012-0115-7.
Verma, H.N., Singh, P. & Chavan, R.M. (2014). Gold nanoparticle: Synthesis and characterization. Vet. World, 7(2): 72–77. http://dx.doi.org/10.14202/vetworld.2014.72-77.
Namvar, F., Rahman, H., Mohamad, R., Baharara, J., Mahdavi, M., Amini, E., Chartrand, M. & Yeap, S. (2014). Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int. J. Nanomedicine, 9(1): 2479-2488. https://doi.org/10.2147/IJN.S59661.
Azizi, S., Ahmad, M.B., Namvar, F. & Mohamad, R. (2014). Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett., 116: 275–277. https://doi.org/10.1016/j.matlet.2013.11.038.
Madhiyazhagan, P., Murugan, K., Kumar, A.N., Nataraj, T., Dinesh, D., Panneerselvam, C., Subramaniam, J., Mahesh Kumar, P., et al. (2015). Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol. Res., 114(11): 4305–4317. https://doi.org/10.1007/s00436-015-4671-0.
Mohandass, C., Vijayaraj, A.S., Rajasabapathy, R., Satheeshbabu, S., Rao, S.V., Shiva, C. & De-Mello, I. (2013). Biosynthesis of Silver Nanoparticles from Marine Seaweed Sargassum cinereum and their Antibacterial Activity. Indian J. Pharm. Sci., 75(5): 606–610.
Dhas, T.S., Kumar, V.G., Karthick, V., Govindaraju, K. & Shankara Narayana, T. (2014). Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 133: 102–106. https://doi.org/10.1016/j.saa.2014.05.042.
Dhas, T.S., Kumar, V.G., Karthick, V., Angel, K.J. & Govindaraju, K. (2014). Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 120: 416–420. https://doi.org/10.1016/j.saa.2013.10.044.
Xu, L., Wang, Y.Y., Huang, J., Chen, C.Y., Wang, Z.X. & Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 10(20): 8996–9031. https://doi.org/10.7150/thno.45413.
Wang, J., Seebacher, N., Shi, H., Kan, Q. & Duan, Z. (2017). Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget, 8(48): 84559–84571. https://doi.org/10.18632/oncotarget.19187.
Zhang, X.F., Shen, W. & Gurunathan, S. (2016). Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model. Int. J. Mol. Sci., 17(10): 1603. https://doi.org/10.3390/ijms17101603.
Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Wu, S., Deng, Y., Zhang, J. & Shao, A. (2020). Nanoparticle-Based Drug Delivery in Cancer Therapy and its Role in Overcoming Drug Resistance. Front. Mol. Biosci., 7: 193. https://doi.org/10.3389/fmolb.2020.00193.
Sriram, M.I., Kanth, S.B., Kalishwaralal, K. & Gurunathan, S. (2010). Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int. J. Nanomedicine, 5: 753–762. https://doi.org/10.2147/IJN.S11727.
Gurunathan, S., Park, J.H., Han, J.W. & Kim, J.H. (2015). Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int. J. Nanomedicine, 10: 4203–4222. https://doi.org/10.2147/IJN.S83953.
Al-Sheddi, E.S., Farshori, N.N., Al-Oqail, M.M., Al-Massarani, S.M., Saquib, Q., Wahab, R., Musarrat, J., Al-Khedhairy, A.A. & Siddiqui, M.A. (2018). Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLa). Bioinorg. Chem. Appl., 2018: 9390784. https://doi.org/10.1155/2018/9390784.
Gurunathan, S., Qasim, M., Park, C., Yoo, H., Kim, J.H. & Hong, K. (2018). Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116. Int. J. Mol. Sci., 19(8): 2269. https://doi.org/10.3390/ijms19082269.
Yuan, Y.G., Peng, Q.L. & Gurunathan, S. (2017). Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int. J. Nanomedicine, 12: 6487–6502. https://doi.org/10.2147/IJN.S135482.
Zielinska, E., Zauszkiewicz-Pawlak, A., Wojcik, M. & Inkielewicz-Stepniak, I. (2018). Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget, 9(4): 4675–4697. https://doi.org/10.18632/oncotarget.22563.
Fard, N.N., Noorbazargan, H., Mirzaie, A., Hedayati Ch,M., Moghimiyan, Z. & Rahimi, A. (2018). Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer. Artif. Cells Nanomed. Biotechnol., 46: S1047–S1058. https://doi.org/10.1080/21691401.2018.1528983.
Kovács, D., Igaz, N., Keskeny, C., Bélteky, P., Tóth, T., Gáspár, R., Madarász, D., Rázga, Z., Kónya, Z., Boros, I.M. & Kiricsi, M. (2016). Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis. Sci. Rep., 6: 27902. https://doi.org/10.1038/srep27902.
Yeasmin, S., Datta, H.K., Chaudhuri, S., Malik, D. & Bandyopadhyay, A. (2017). In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J. Mol. Liq., 242: 757–766. https://doi.org/10.1016/j.molliq.2017.06.047.
Burdușel, A.C., Gherasim, O., Grumezescu, A.M., Mogoantă, L., Ficai, A. & Andronescu, E. (2018). Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials, 8(9): 681. https://doi.org/10.3390/nano8090681.
Zhu, L., Guo, D., Sun, L., Huang, Z., Zhang, X., Ma, W., Wu, J., Xiao, L., Zhao, Y. & Gu, N. (2017). Activation of autophagy by elevated reactive oxygen species rather than released silver ions promotes cytotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in hematopoietic cells. Nanoscale, 9(17): 5489–5498. https://doi.org/10.1039/c6nr08188f.
Wang, Z.X., Chen, C.Y., Wang, Y., Li, F.X.Z., Huang, J., Luo, Z.W., et al. (2019). Ångstrom-Scale Silver Particles as a Promising Agent for Low-Toxicity Broad-Spectrum Potent Anticancer Therapy. Adv. Funct. Mater., 29(23): 1808556. https://doi.org/10.1002/adfm.201808556.
Tavakoli, F., Jahanban-Esfahlan, R., Seidi, K., Jabbari, M., Behzadi, R., Pilehvar-Soltanahmadi, Y. & Zarghami, N. (2018). Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif. Cells Nanomed. Biotechnol., 46: 75–86. https://doi.org/10.1080/21691401.2018.1452021.
Farah, M.A., Ali, M.A., Chen, S.M., Li, Y., Al-Hemaid, F.M., Abou-Tarboush, F.M., Al-Anazi, K.M. & Lee, J. (2016). Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf. B Biointerfaces, 141: 158–169. https://doi.org/10.1016/j.colsurfb.2016.01.027.
Akter, M., Sikder, M.T., Rahman, M.M., Ullah, A., Hossain, K., Banik, S., Hosokawa, T., Saito, T. & Kurasaki, M. (2017). A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res., 9: 1–16. https://doi.org/10.1016/j.jare.2017.10.008.
Holmila, R.J., Vance, S.A., King, S.B., Tsang, A.W., Singh, R. & Furdui, C.M. (2019). Silver Nanoparticles Induce Mitochondrial Protein Oxidation in Lung Cells Impacting Cell Cycle and Proliferation. Antioxidants, 8(11): 552. https://doi.org/10.3390/antiox8110552.
Huai, Y., Hossen, M.N., Wilhelm, S., Bhattacharya, R. & Mukherjee, P. (2019). Nanoparticle Interactions with the Tumor Microenvironment. Bioconjug. Chem., 30(9): 2247–2263. https://doi.org/10.1021/acs.bioconjchem.9b00448.
Chaudhary, R., Nawaz, K., Khan, A.K., Hano, C., Abbasi, B.H. & Anjum, S. (2020). An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and Their Biomedical Applications. Biomolecules, 10(11), 1498. https://doi.org/10.3390/biom10111498.
Khan, I., Saeed, K. & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian J. Chem., 12(7): 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.
Zhang, D., Ma, X.-l., Gu, Y., Huang, H. & Zhang, G.-w. (2020). Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front. Chem., 8: 799. https://doi.org/10.3389/fchem.2020.00799.
Anees Ahmad, S., Sachi Das, S., Khatoon, A., Tahir Ansari, M., Afzal, Mohd., Saquib Hasnain, M. & Kumar Nayak, A. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol., 3: 756–769. https://doi.org/10.1016/j.mset.2020.09.002.
Marambio-Jones, C. & Hoek, E.M.V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res., 12(5): 1531–1551. https://doi.org/10.1007/s11051-010-9900-y.
Pal, S., Tak, Y.K. & Song, J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol., 73(6): 1712–1720. https://doi.org/10.1128/AEM.02218-06.
Durán, N., Marcato, P.D., Conti, R.D., Alves, O.L., Costa, F.T.M. & Brocchi, M. (2010). Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc., 21: 949–959. https://doi.org/10.1590/S0103-50532010000600002.
Shameli, K., Ahmad, M.B., Jazayeri, S.D., Shabanzadeh, P., Sangpour, P., Jahangirian, H. & Gharayebi, Y. (2012). Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem. Cent. J., 6(1): 1–10. https://doi.org/10.1186/1752-153X-6-73.
Wang, L., Hu, C. & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed., 12: 1227. https://doi.org/10.2147/IJN.S121956.
Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., Lee, H.J., et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med., 3(1): 95–101. https://doi.org/10.1016/j.nano.2006.12.001.
Dibrov, P., Dzioba, J., Gosink, K.K. & Häse, C.C. (2002). Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother., 46(8): 2668–2670. https://doi.org/10.1128/AAC.46.8.2668-2670.2002.
Chung, I.-M., Park, I., Seung-Hyun, K., Thiruvengadam, M. & Rajakumar, G. (2016). Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Res. Lett., 11: 40. https://doi.org/10.1186/s11671-016-1257-4.
Roy, A., Bulut, O., Some, S., Mandal, A.K. & Yilmaz, M.D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv., 9(5): 2673–2702. https://doi.org/10.1039/C8RA08982E.
Radhakrishnan, V.S., Reddy Mudiam, M.K., Kumar, M., Dwivedi, S.P., Singh, S.P. & Prasad, T. (2018). Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int. J. Nanomedicine, 13: 2647–2663. https://doi.org/10.2147/IJN.S150648.
Küünal, S., Rauwel, P. & Rauwel, E. (2018). Plant extract mediated synthesis of nanoparticles. In: Barhoum, A. & Makhlouf, A.S.H. (eds.), Emerging Applications of Nanoparticles and Architecture Nanostructures: Current prospects and future trends. Elsevier, pp. 411-446. https://doi.org/10.1016/B978-0-323-51254-1.00014-2.
Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X. & Jiang, X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33(7): 2327–2333. https://doi.org/10.1016/j.biomaterials.2011.11.057
Ahmad, A., Syed, F., Imran, M., Khan, A.U., Tahir, K., Khan, Z.U.H. & Yuan, Q. (2016). Phytosynthesis and Antileishmanial Activity of Gold Nanoparticles by Maytenus Royleanus. J. Food Biochem., 40(4): 420–427. https://doi.org/10.1111/jfbc.12232.
Ahmad, T., Wani, I.A., Lone, I.H., Ganguly, A., Manzoor, N., Ahmad, A., Ahmed, J. & Al-Shihri, A.S. (2013). Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater. Res. Bull., 48(1): 12–20. https://doi.org/10.1016/j.materresbull.2012.09.069
Lu, L., Sun, R.W., Chen, R., Hui, C.K., Ho, C.M., Luk, J.M., Lau, G.K. & Che, C.M. (2008). Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther., 13(2): 253–262.
Trefry, J.C. & Wooley, D.P. (2013). Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. J. Biomed. Nanotechnol., 9(9): 1624–1635. https://doi.org/10.1166/jbn.2013.1659.
Yang, X.X., Li, C.M. & Huang, C.Z. (2016). Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 8(5): 3040–3048. https://doi.org/10.1039/C5NR07918G.
Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, S. & Galdiero, M. (2013). Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomedicine, 8: 4303–4314. https://doi.org/10.2147/IJN.S50070.
Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H. & Yacaman, M.J. (2005). Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology, 3: 6. https://doi.org/10.1186/1477-3155-3-6.
Speshock, J.L., Murdock, R.C., Braydich-Stolle, L.K., Schrand, A.M. & Hussain, S.M. (2010). Interaction of silver nanoparticles with Tacaribe virus. J Nanobiotechnology., 8: 19. https://doi.org/10.1186/1477-3155-8-19.
Rogers, J.V., Parkinson, C.V., Choi, Y.W., Speshock, J.L. & Hussain, S.M. (2008). A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation. Nanoscale Res. Lett., 3(4): 129–133. https://doi.org/10.1007/s11671-008-9128-2.
Mori, Y., Ono, T., Miyahira, Y., Nguyen, V.Q., Matsui, T. & Ishihara, M. (2013). Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett., 8(1): 93. https://doi.org/10.1186/1556-276X-8-93.
Khoshnevisan, K., Maleki, H. & Baharifar, H. (2021). Nanobiocide Based-Silver Nanomaterials Upon Coronaviruses: Approaches for Preventing Viral Infections. Nanoscale Res. Lett., 16(1): 1–9. https://doi.org/10.1186/s11671-021-03558-3.
Sinclair, T.R., van den Hengel, S.K., Raza, B.G., Rutjes, S.A., de Roda Husman, A.M., Peijnenburg, W.J.G.M., Roesink, H.D.W. & de Vos, W.M. (2021). Surface chemistry-dependent antiviral activity of silver nanoparticles. Nanotechnology, 32(36): 365101. https://doi.org/10.1088/1361-6528/ac03d6.
Douma, M., Boualy, B., Manaut, N., Hammal, R., Byadi, S., Lahlali, M., Eddaoudi, F.E. & Mallouk, S. (2021). Sulphated polysaccharides from seaweeds as potential entry inhibitors and vaccine adjuvants against SARS-CoV-2 RBD spike protein: a computational approach. Journal of Taibah University for Science, 15(1): 649–655. https://doi.org/10.1080/16583655.2021.1999068.
Salih, A., Thissera, B., Yaseen, M., Hassane, A., El-Seedi, H.R., Sayed, A.M. & Rateb, M.E. (2021). Marine Sulfated Polysaccharides as Promising Antiviral Agents: A Comprehensive Report and Modeling Study Focusing on SARS CoV-2. Mar. drugs, 19(8): 406. https://doi.org/10.3390/md19080406.
Hans, N., Malik, A. & Naik, S. (2021). Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour. Technol. Rep., 13: 100623. https://doi.org/10.1016/j.biteb.2020.100623.
Wang, D., Xue, B., Wang, L., Zhang, Y., Liu, L. & Zhou, Y. (2021). Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci. Rep., 11: 10356. https://doi.org/10.1038/s41598-021-89854-5.
Kim, S.W., Jung, J.H., Lamsal, K., Kim, Y.S., Min, J.S. & Lee, Y.S. (2012). Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology, 40(1): 53–58. https://doi.org/10.5941/MYCO.2012.40.1.053.
Wahl, M. (1989). Marine epibiosis. I. Fouling and antifouling: Some basic aspects. Mar. Ecol. Prog. Ser., 58: 175–189. http://dx.doi.org/10.3354/meps058175.
Yebra, D.M., Kiil, S. & Dam-Johansen, K. (2004). Antifouling Technology-Past, Present and Future Steps towards Efficient and Environmentally Friendly Antifouling Coatings. Prog. Org. Coat., 50: 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001.
Kumar, S., Ye, F., Dobretsov, S. & Dutta, J. (2021). Nanocoating is a new way for Biofouling Prevention. Front. Nanotechnol., 3: 771098. https://doi.org/10.3389/fnano.2021.771098.
Lellouche, J., Kahana, E., Elias, S., Gedanken, A. & Banin, E. (2009). Antibiofilm activity of nanosized magnesium fluoride. Biomaterials, 30(30): 5969–5978. https://doi.org/10.1016/j.biomaterials.2009.07.03.
Ikuma, K., Decho, A.W. & Lau, B.L. (2015). When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles. Front. Microbiol., 6: 591. https://doi.org/10.3389/fmicb.2015.00591.
Joshi, A.S., Singh, P. & Mijakovic, I. (2020). Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. Int. J. Mol. Sci., 21(20): 7658. https://doi.org/10.3390/ijms21207658.
Jun, J.Y., Jung, M.J., Jeong, I.H., Yamazaki, K., Kawai, Y. & Kim, B.M. (2018). Antimicrobial and Antibiofilm Activities of Sulfated Polysaccharides from Marine Algae against Dental Plaque Bacteria. Mar. drugs, 16(9): 301. https://doi.org/10.3390/md16090301.
Nag, M., Lahiri, D., Dey, A., Sarkar, T., Joshi, S. & Ray, R.R. (2021). Evaluation of algal active compounds as potent antibiofilm agent. J. Basic Microbiol., 2021: 1–12. https://doi.org/10.1002/jobm.202100470.
Mukhopadhyay, A. & Prosenjit, M. (2018). Application of Nano-biotechnology for Improvement in Therapeutic Approaches for the Treatment of Diabetes. J. Clin. Mol. Endocrinol., 3(2): 47. https://doi.org/10.21767/2572-5432.100047.
Bhardwaj, M., Yadav, P., Dalal, S. & Kataria, S.K. (2020). A review on ameliorative green nanotechnological approaches in diabetes management. Biomed. Pharmacother., 127: 110198. https://doi.org/10.1016/j.biopha.2020.110198.
Lordan, S., Smyth, T.J., Soler-Vila, A., Stanton, C. & Ross, R.P. (2013). The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem., 141(3): 2170–2176. https://doi.org/10.1016/j.foodchem.2013.04.123.
Deepak, P., Amutha, V., Birundha, R., Sowmiya, R., Kamaraj, C., Balasubramanian, V., et al. (2018). Facile green synthesis of nanoparticles from brown seaweed Sargassum wightii and its biological application potential. Adv. Nat. Sci.: Nanosci. Nanotechnol., 9(3): 035019. https://doi.org/10.1088/2043-6254/aadc4a.
Kiran, M.V. & Murugesan, S. (2013). Biogenic silver nanoparticles by Halymenia poryphyroides and its in vitro anti-diabetic efficacy. J. Chem. Pharm. Res., 5: 1001-1008.
Dhas, T.S., Kumar, V.G., Karthick, V., Vasanth, K., Singaravelu, G. & Govindaraju, K. (2016). Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme Microb. Technol., 95: 100–106. https://doi.org/10.1016/j.enzmictec.2016.09.003.
Madkour L.H. (2019). Benefits of Nanomaterials and Nanowire Geometry. In: Nanoelectronic Materials. Advanced Structured Materials, Vol. 116. Springer, Cham. pp. 101-121. https://doi.org/10.1007/978-3-030-21621-4_4.
Albrecht, M.A., Evans, C.W. & Raston, C.L. (2006). Green chemistry and the health implications of nanoparticles. Green Chem., 8(5): 417–432. https://doi.org/10.1039/B517131H.
Xia, T., Li, N. & Nel, A.E. (2009). Potential Health Impact of Nanoparticles. Annu. Rev. Public Health, 30(1): 137–150. https://doi.org/10.1146/annurev.publhealth.031308.100155.
Gahlawat, G. & Choudhury, A.R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv., 9(23): 12944–12967. https://doi.org/10.1039/C8RA10483B.
Albanese, A., Tang, P.S. & Chan, W.C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 14: 1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124.
Gahlawat, G., Shikha, S., Chaddha, B.S., Chaudhuri, S.R., Mayilraj, S. & Choudhury, A.R. (2016). Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb. Cell Fact., 15: 25. https://doi.org/10.1186/s12934-016-0422-x.
Vahedifard, F. & Chakravarthy, K. (2021). Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater., 4(1): 75–99. https://doi.org/10.1007/s42247-021-00168-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Copyright (c) 2021 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.