Effects of Nanosilver Treatments on Vase Life of Cut Flowers of Carnation (Dianthus caryophyllus cv. 'White Liberty’)
Keywords:
Carnation (Dianthus caryophyllus), Cut flowers, Nanosilver (NS), Vase Life, Post-HarvestAbstract
Carnation (Dianthus caryophyllus) is one of the most cultivated flowers around the world for producing of cut flowers. This paper assessed the efficacy of nanosilver (NS) as an antibactericidal agent in extending the vase life of cut flowers of carnation (Dianthus caryophyllus L.). Vase solutions were consisting of NS concentrations in 5, 10, 20, 40 and 80 ppm included sucrose 6 percent added in all treatments. Results showed that all NS treatments were combined with sugar extended the vase life of carnation flowers significantly compared with control. Observations indicated that NS treatments inhibited the growth of microorganisms in vase solution and considerably extend the vase life of cut flowers of carnation.
Downloads
References
Altman, S.A. & Solomos, T. (1995). Differential respiratory and morphological responses of carnations pulsed or continuously treated with silver thiosulfate. Postharvest Biol. Technol., 5(4): 331–343. https://doi.org/10.1016/0925-5214(94)00031-M.
Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., Domann, E. & Schnettler, R. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25(18): 4383–4391. https://doi.org/10.1016/j.biomaterials.2003.10.078.
Chen, X. & Schluesener, H.J. (2008). Nanosilver: a nanoproduct in medical application. Toxicol. Lett., 176(1): 1–12. https://doi.org/10.1016/j.toxlet.2007.10.004.
Da Silva, J.A.T. (2003). The cut flower: post-harvest considerations. J. Biol. Sci., 3: 406-442. https://dx.doi.org/10.3923/jbs.2003.406.442.
Dubas, S.T., Kumlangdudsana, P. & Potiyaraj, P. (2006). Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf., A, 289(1): 105–109. https://doi.org/10.1016/j.colsurfa.2006.04.012.
Fujino, D.W., Reid, M.S. & Kohl, H.C. (1983). The water relations of Maidenhair fronds treated with silver nitrate. Sci. Hortic., 19(3): 349–355. https://doi.org/10.1016/0304-4238(83)90083-3.
Furno, F., Morley, K.S., Wong, B., Sharp, B.L., Arnold, P.L., Howdle, S.M., Bayston, R., Brown, P.D., Winship, P.D. & Reid, H.J. (2004). Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J. Antimicrob. Chemother., 54(6): 1019–1024. https://doi.org/10.1093/jac/dkh478.
Galbally, J. & Galbally, E. (1997). Carnations and pinks for garden and greenhouse: their true history and complete cultivation. Timber Press, Portland, Oregon, USA. pp. 310.
Halevy, A.H. & Mayak, S. (1981). Senescence and Postharvest Physiology of Cut Flowers - Part 2. In: Janick, J. (Ed.), Horticultural Reviews, Vol. 3, John Wiley & Sons, Inc., New York. pp. 59-143. https://doi.org/10.1002/9781118060766.ch3.
He, S., Joyce, D.C., Irving, D.E. & Faragher, J.D. (2006). Stem end blockage in cut Grevillea ‘Crimson Yul-lo’ inflorescences. Postharvest Biol. Technol., 41(1): 78–84. https://doi.org/10.1016/j.postharvbio.2006.03.002.
Ichimura, K., Kojima, K. & Goto, R. (1999). Effects of temperature, 8-hydroxyquinoline sulphate and sucrose on the vase life of cut rose flowers. Postharvest Biol. Technol., 15(1): 33–40. https://doi.org/10.1016/S0925-5214(98)00063-5.
Ichimura, K., Yoshioka, S. & Yumoto-Shimizu, H. (2008). Effects of Silver Thiosulfate Complex (STS), Sucrose and Combined Pulse Treatments on the Vase Life of Cut Snapdragon Flowers. Environ. Control Biol., 46(3): 155–162. https://doi.org/10.2525/ecb.46.155.
Ichimura, K. & Shimizu-Yumoto, H. (2007). Extension of the vase life of cut roses by treatment with sucrose before and during simulated transport. Bull. Natl. Inst. Flor. Sci., 7(7): 17-27.
Jain, P. & Pradeep, T. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng., 90(1): 59–63. https://doi.org/10.1002/bit.20368.
Jiang, H., Manolache, S., Wong, A.C.L. & Denes, F.S. (2004). Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci., 93(3): 1411–1422. https://doi.org/10.1002/app.20561.
Jürgens, A., Witt, T. & Gottsberger, G. (2003a). Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochem. Syst. Ecol., 31(4): 345–357. https://doi.org/10.1016/S0305-1978(02)00173-4.
Kim, J.H., Lee, A.K. & Suh, J.K. (2005). Effect of certain pre-treatment substances on vase life and physiological character in Lilium spp. Acta Hortic., 673: 307-314. https://doi.org/10.17660/ActaHortic.2005.673.39.
Liu, J., He, S., Zhang, Z., Cao, J., Lv, P., He, S., Cheng, G. & Joyce, D.C. (2009). Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biol. Technol., 54(1): 59–62. https://doi.org/10.1016/j.postharvbio.2009.05.004.
Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K., Chiu, J.F. & Che, C.M. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem., 12(4): 527–534. https://doi.org/10.1007/s00775-007-0208-z.
Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T. & Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10): 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059.
Nichols, R. (1966). Ethylene Production During Senescence of Flowers. J. Hortic. Sci., 41(3): 279–290. https://doi.org/10.1080/00221589.1966.11514176.
Niemietz, C.M. & Tyerman, S.D. (2002). New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett., 531(3): 443–447. https://doi.org/10.1016/s0014-5793(02)03581-0.
Ohkawa, K., Kasahara, Y. & Suh, J.N. (1999). Mobility and Effects on Vase Life of Silver-containing Compounds in Cut Rose Flowers. HortScience, 34(1): 112–113. https://doi.org/10.21273/HORTSCI.34.1.112.
Park, S.H., Oh, S.G., Mun, J.Y. & Han, S.S. (2005). Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloids Surf. B Biointerfaces, 44(2-3): 117–122. https://doi.org/10.1016/j.colsurfb.2005.06.002.
Lü, P., Cao, J., He, S., Liu, J., Li, H., Cheng, G., Ding, Y. & Joyce, D.C. (2010). Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol. Technol., 57(3): 196–202. https://doi.org/10.1016/j.postharvbio.2010.04.003.
Reid, M.S., Paul, J.L., Farhoomand, M.B., Kofranek, A.M. & Staby, G.L. (1980). Pulse treatments with the silver thiosulfate complex extend the vase life of cut carnations. J. Am. Soc. Hortic. Sci., 105(1): 25-27.
Russell, A.D. & Hugo, W.B. (1994). Antimicrobial activity and action of silver. Prog. Med. Chem., 31: 351–370. https://doi.org/10.1016/s0079-6468(08)70024-9.
Solgi, M., Kafi, M., Taghavi, T.S. & Naderi, R. (2009). Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. Postharvest Biol. Technol., 53(3): 155–158. https://doi.org/10.1016/j.postharvbio.2009.04.003.
Van Doorn, W.G. (1996). Water Relations of Cut Flowers. In: Janick, J. (Ed.), Horticultural Reviews, Vol. 18, John Wiley & Sons, Inc., New York. pp. 1-85. https://doi.org/10.1002/9780470650608.ch1.
Van Ieperen, W. (2007). Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? Trends Plant Sci., 12(4): 137–142. https://doi.org/10.1016/j.tplants.2007.03.001.
Veen, H. (1979). Effects of silver on ethylene synthesis and action in cut carnations. Planta, 145(5): 467–470. https://doi.org/10.1007/BF00380101.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.