Characterization of a Red Bacterium Strain Isolated from Root Nodule of Faba Bean (Vicia faba L.) for Growth and Pigment Production
Keywords:
Characterization of red bacterium, Identification, Growth, PigmentationAbstract
An unidentified red bacterium strains isolated as endophyte of root nodule of faba bean, when characterized for morphological, microscopic, biochemical and molecular (16SrDNA sequence) features were identified as a novel strain of Serratia marcescens. The strain formed small red colony size measuring 2-3mm in diameter on Glucose Mannitol Tryptone Yeast Extract (GMTYE) agar medium. Under scanning electron microscopy, the single cell rods measured 3.55 - 4.18µm x 0.48µm - 0.68µm. The bacterium strain could efficiently utilize a wide range of carbohydrates (monosaccharide, disaccharide and polysaccharide) both for growth and pigmentation. It’s preferred simple form of organic nitrogen for growth and pigmentation but was unable to utilize inorganic sources of nitrogen. The bacterium could grow over a wide range of medium pH (4.00-11.00) and temperature (20-37°C) and NaCl concentration (0.5-2.0%) but optimal growth and pigmentation were observed in the GMTYE medium of pH (6.00-7.00) containing NaCl at 0.5 percent level and at 28°C of incubation temperature.
Downloads
References
Allen, G.R., Reichelt, J.L. & Gray, P.P. (1983). Influence of Environmental Factors and Medium Composition on Vibrio gazogenes Growth and Prodigiosin Production. Appl. Environ. Microbiol., 45: 1727-1732. https://doi.org/10.1128/aem.45.6.1727-1732.1983.
Camera, E., Mastrofrancesco, A., Fabbri, C., Daubrawa, F., Picardo, M., Sies, H. & Stahl, W. (2009). Astaxanthin, canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes. Exp. Dermatol., 18(3): 222–231. https://doi.org/10.1111/j.1600-0625.2008.00790.x.
Cang, S., Sanada, M., Johdo, O., Ohta, S. Nagamatsu, Y. & Yoshimoto, A. (2000). High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnol. Lett., 22(22): 1761–1765. https://doi.org/10.1023/A:1005646102723.
Cowan, S.T. & Steel, K.J. (1974). Cowan and Steel's manual for the identification of medical bacteria. 2nd edition (Revised), Cambridge University Press, Cambridge.
Cubero, J., Martínez, M.C., Llop, P. & López, M.M. (1999). A simple and efficient PCR method for the detection of Agrobacterium tumefaciens in plant tumours. J. Appl. Microbiol., 86(4): 591–602. https://doi.org/10.1046/j.1365-2672.1999.00700.x.
de Araújo, H.W., Fukushima, K. & Takaki, G.M. (2010). Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules, 15(10): 6931–6940. https://doi.org/10.3390/molecules15106931.
Fassett, R.G. & Coombes, J.S. (2011). Astaxanthin: a potential therapeutic agent in cardiovascular disease. Mar. Drugs, 9(3): 447–465. https://doi.org/10.3390/md9030447.
Giri, A.V., Anandkumar, N., Muthukumaran, G. & Pennathur, G. (2004). A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol., 4: 11. https://doi.org/10.1186/1471-2180-4-11.
Gordon, R.E. (1968). The taxonomy of soil bacteria. In: Gray, T.R.G. & Parkinson, D. (ed.), The Ecology of Soil Bacteria, Liverpool: University Press, pp. 293-321.
Guerin, M., Huntley, M.E. & Olaizola, M. (2003). Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol., 21(5): 210–216. https://doi.org/10.1016/S0167-7799(03)00078-7.
Helmersson, J., Arnlöv, J., Larsson, A. & Basu, S. (2009). Low dietary intake of beta-carotene, alpha-tocopherol and ascorbic acid is associated with increased inflammatory and oxidative stress status in a Swedish cohort. Br. J. Nutr., 101(12): 1775–1782. https://doi.org/10.1017/S0007114508147377.
Holt, J.G., Krieg, N.R., Stanley, J.T. & Williams, S.T. (1994). Enterobacteriaceae. In: Holt, J.G., Krieg, N.R., Sneath, P.H.A., Stanley, J.T. & Williams, S.T. (eds.), Bergey's Manual of Determinative Bacteriology, 9th edn., Williams & Wilkins, Baltimore, pp. 87-175.
Hugh, R. & Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J. Bacteriol., 66(1): 24–26. https://doi.org/10.1128/jb.66.1.24-26.1953.
Hussein, G., Sankawa, U., Goto, H., Matsumoto, K. & Watanabe, H. (2006). Astaxanthin, a carotenoid with potential in human health and nutrition. J. Nat. Prod., 69(3): 443–449. https://doi.org/10.1021/np050354+.
Langsrud, S., Møretrø, T. & Sundheim, G. (2003). Characterization of Serratia marcescens surviving in disinfecting footbaths. J. Appl. Microbiol., 95(1): 186–195. https://doi.org/10.1046/j.1365-2672.2003.01968.x.
Li, B., Yu, R., Liu, B., Tang, Q., Zhang, G., Wang, Y., Xie, G. & Sun, G. (2011). Characterization and comparison of serratia marcescens isolated from edible cactus and from silkworm for virulence potential and chitosan susceptibility. Braz. J. Microbiol., 42(1): 96–104. https://doi.org/10.1590/S1517-83822011000100013.
Pérez-Tomás, R., Montaner, B., Llagostera, E. & Soto-Cerrato, V. (2003). The prodigiosins, proapoptotic drugs with anticancer properties. Biochem. Pharmacol., 66(8): 1447–1452. https://doi.org/10.1016/s0006-2952(03)00496-9.
Raj, D.N., Dhanasekaran, D., Thajuddin. N. & Panneerselvam, A. (2009). Production of prodigiosin from Serratia marcescens and its cytotoxicity activity. J. Pharma. Res., 2: 590-593.
Silverman, M.P. & Munoz, E.F. (1973). Effect of Iron and Salt on Prodigiosin Synthesis in Serratia marcescens. J. Bacteriol., 114(3): 999-1006. https://doi.org/10.1128/jb.114.3.999-1006.1973.
Tariq, A.L. & Prabakaran, J.J. (2010). Molecular Characterization of Psychrotrophic Serratia marcescens TS1 Isolated from Apple Garden at Badran Kashmir. Res. J. Agric. & Biol. Sci., 6: 364–369.
Wei, Y.H. & Chen, W.C. (2005). Enhanced production of prodigiosin-like pigment from Serratia marcescens SMΔR by medium improvement and oil-supplementation strategies. J. Biosci. Bioeng., 99(6): 616–622. https://doi.org/10.1263/jbb.99.616.
Wertz, K., Hunziker, P.B., Seifert, N., Riss, G., Neeb, M., Steiner, G., Hunziker, W. & Goralczyk, R. (2005). β-Carotene Interferes with Ultraviolet Light A-Induced Gene Expression by Multiple Pathways. J. Invest. Dermatol., 124(2): 428–434. https://doi.org/10.1111/j.0022-202X.2004.23593.x.
Williams, R.P., Gott, C.L., Qadri, S.M. & Scott, R.H. (1971). Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. J. Bacteriol., 106(2): 438–443. https://doi.org/10.1128/jb.106.2.438-443.1971.
Williamson, N.R., Simonsen, H.T., Harris, A.K., Leeper, F.J. & Salmond, G.P. (2006). Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin. J. Ind. Microbiol. Biotechnol., 33(2): 151–158. https://doi.org/10.1007/s10295-005-0040-9.
Williamson, N.R., Fineran, P.C., Gristwood, T., Chawrai, S.R., Leeper, F.J. & Salmond, G.P. (2007). Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol., 2(6): 605–618. https://doi.org/10.2217/17460913.2.6.605.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.