Diagnosis and Differentiation of Hypochromic Microcytic Anemia among Elementary School Children in Ranya District
Keywords:
Hypochromic Microcytic Anemia, Iron Deficiency Anemia, Thalassemia Trait, Iron status, Ranya districtAbstract
Hypochromic microcytic anemia (HMA) is defined as decreased hemoglobin (Hb), mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) levels, the most common causes of microcytic anemia in children are iron deficiency anemia (IDA) and thalassemia trait (TT). The cross-sectional study was conducted to diagnose and differentiate HMA among elementary school children in the Ranya district. A total of 134 subjects were included in the study of which 28 participants were healthy, and 106 subjects were diagnosed with HMA. The study subjects were divided into three groups. Group 1 with 28 healthy subjects, Group 2 with 38 IDA patients and Group 3 with 68 TT patients. Complete blood count, iron status (ferritin, serum iron, UIBC, TSAT (%) and TIBC), T3, T4, TSH, Erythropoietin hormone, Creatinine and GFR were estimated in all three groups. The results demonstrated that there was a significant decrease (P < 0.0001) in Hb, HCT, MCV, MCH and MCHC in both IDA and TT patients. While significant increase was seen in RDW and PLT count in both IDA and TT. The result revealed a significant decrease (P < 0.0001) in serum ferritin, serum iron and TSAT (%), whereas a significant increase in TIBC and UIBC in IDA. Serum erythropoietin (EPO) was increased significantly in both IDA and TT. Thyroid hormones (T3 and T4), TSH, serum creatinine and GFR were non-significantly changed in both IDA and TT patients.
Downloads
References
Lanzkowsky, P. (2016). Classification and Diagnosis of Anemia in Children. Lanzkowsky's Manual of Pediatric Hematology and Oncology (Sixth Edition). Academic Press. pp. 32-41 doi: 10.1016/B978-0-12-801368-7.00003-X.
World Health Organization (2011). Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Available from: http://www.who.int/vmnis/indicators/haemoglobin
Fischbach, F.T. & Dunning, M.B. (2009). A Manual of Laboratory and Diagnostic Tests. Lippincott Williams & Wilkins. 8th edition. Lippincott Williams & Wilkins.
Li, H. & Ginzburg, Y.Z. (2010). Crosstalk between Iron Metabolism and Erythropoiesis. Adv Hematol., 2010, 605435. https://doi.org/10.1155/2010/605435.
Lazarte, S.S., Mónaco, M.E., Jimenez, C.L., Ledesma Achem, M.E., Terán, M.M. & Issé, B.A. (2015). Erythrocyte Catalase Activity in More Frequent Microcytic Hypochromic Anemia: Beta-Thalassemia Trait and Iron Deficiency Anemia. Adv Hematol. 2015: 343571. https://doi.org/10.1155/2015/343571.
Alam, S.L.S., Purnamasari, R., Bahar, E. & Rahadian, K.Y. (2014). Mentzer index as a screening tool for iron deficiency anemia in 6-12-year-old children. Paediatr. Indones., 54(5): 294–8. https://doi.org/10.14238/pi54.5.2014.294-8.
Uprichard, W.O. & Uprichard, J. (2013). Investigating microcytic anaemia. BMJ, 346: f3154. https://doi.org/10.1136/bmj.f3154.
Urrechaga, E., Hoffmann, J.J., Izquierdo, S. & Escanero, J.F. (2015). Differential diagnosis of microcytic anemia: the role of microcytic and hypochromic erythrocytes. Int. J. Lab. Hematol., 37(3): 334–340. https://doi.org/10.1111/ijlh.12290.
WHO/UNICEF/UNU (2001). Iron deficiency anaemia assessment, prevention, and control: a guide for programme managers. Geneva, World Health Organization.
Marengo-Rowe, A.J. (2007). The thalassemias and related disorders. Proc. (Bayl. Univ. Med. Cent.), 20(1): 27–31. https://doi.org/10.1080/08998280.2007.11928230.
Brancaleoni, V., Di Pierro, E., Motta, I. & Cappellini, M.D. (2016). Laboratory diagnosis of thalassemia. Int. J. Labor. Hematol., 38(S1): 32–40. https://doi.org/10.1111/ijlh.12527.
Elsayed, M. E., Sharif, M. U., & Stack, A. G. (2016). Transferrin Saturation: A Body Iron Biomarker. Adv. Clin. Chem., 75: 71–97. https://doi.org/10.1016/bs.acc.2016.03.002
Levey, A.S., Bosch, J.P., Lewis, J.B., Greene, T., Rogers, N. & Roth, D. (1999). A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med., 130(6): 461–470. https://doi.org/10.7326/0003-4819-130-6-199903160-00002.
Jahangiri, M., Rahim, F. & Malehi, A.S. (2019). Diagnostic performance of hematological discrimination indices to discriminate between βeta thalassemia trait and iron deficiency anemia and using cluster analysis: Introducing two new indices tested in Iranian population. Sci. Rep., 9(18610): 1–13. https://doi.org/10.1038/s41598-019-54575-3
Lafferty, J.D., Crowther, M.A., Ali, M.A. & Levine, M. (1996). The Evaluation of various Mathematical RBC Indices and their Efficacy in Discriminating between Thalassemic and Non-Thalassemic Microcytosis. Am. J. Clin. Pathol., 106(2): 201–205. https://doi.org/10.1093/ajcp/106.2.201.
Rahmani, S. & Demmouche, A. (2015) Iron Deficiency Anemia in Children and Alteration of the Immune System. J. Nutr. Food Sci., 5: 333. https://doi.org/10.4172/2155-9600.100033.
Roth, I.L., Lachover, B., Koren, G., Levin, C., Zalman, L. & Koren, A. (2018). Detection of β-Thalassemia Carriers by Red Cell Parameters Obtained from Automatic Counters using Mathematical Formulas. Mediterr. J. Hematol. Infect. Dis., 10(1). https://doi.org/10.4084/MJHID.2018.008.
Halis, H., Bor-Kucukatay, M., Akin, M., Kucukatay, V., Bozbay, I. & Polat, A. (2009). Hemorheological parameters in children with iron-deficiency anemia and the alterations in these parameters in response to iron replacement. Pediatr. Hematol. Oncol., 26(3): 108–118. https://doi.org/10.1080/08880010902754909.
Benli, A.R., Yildiz, S.S. & Cikrikcioglu, M.A. (2017). An evaluation of thyroid autoimmunity in patients with beta thalassemia minor: A case-control study. Pak. J. Med. Sci., 33(5): 1106–1111. https://doi.org/10.12669/pjms.335.13210.
Guimarães, J.S., Cominal, J.G., Silva-Pinto, A.C., Olbina, G., Ginzburg, Y.Z., Nandi, V., Westerman, M., Rivella, S. & de Souza, A.M. (2015). Altered erythropoiesis and iron metabolism in carriers of thalassemia. Eur. J. Haematol., 94(6): 511–518. https://doi.org/10.1111/ejh.12464.
Keramati, M.R., Sadeghian, M.H., Ayatollahi, H., Mahmoudi, M., Khajedaluea, M., Tavasolian, H. & Borzouei, A. (2011). Peripheral Blood Lymphocyte Subset Counts in Pre-menopausal Women with Iron-Deficiency Anaemia. Malays. J. Med. Sci., 18(1): 38–44.
Alkindi, S., Al Musalami, A., Al Wahaibi, H., Althuraiya, A.S., Al Ghammari, N., Panjwani, V., Fawaz, N. & Pathare, A.V. (2018). Iron deficiency and iron deficiency anemia in the adult omani population. J. Appl. Hematol., 9(1): 11-15. https://doi.org/10.4103/joah.joah_65_17.
Kar, Y.D. & Altınkaynak, K. (2021). Reticulocyte hemoglobin equivalent in differential diagnosis of iron deficiency, iron deficiency anemia and β thalassemia trait in children. Turkish J. Biochem., 46(1): 43–49. https://doi.org/10.1515/tjb-2020-0277.
Metwalley, K.A., Farghaly, H.S. & Hassan, A.F. (2013). Thyroid status in Egyptian primary school children with iron deficiency anemia: Relationship to intellectual function. Thyroid Res. Pract., 10(3): 91-95. https://doi.org/10.4103/0973-0354.116131.
El-Masry, H.M., Hamed, A.M., Hassan, M.H., Fayed, H.M. & Abdelzaher, M. (2018). Thyroid Function among Children with Iron Deficiency Anaemia: Pre and Post Iron Replacement Therapy. J. Clin. Diagnostic Res., 12(1): BC01-BC05. https://www.doi.org/10.7860/JCDR/2018/32762/11023.
Ali, E.T., Jabbar, A.S. & Mohammed, A.N. (2019). A Comparative Study of Interleukin 6, Inflammatory Markers, Ferritin, and Hematological Profile in Rheumatoid Arthritis Patients with Anemia of Chronic Disease and Iron Deficiency Anemia. Anemia, 2019, 3457347. https://doi.org/10.1155/2019/3457347.
Chen, J.S., Lin, K.H., Wang, S.T. & Yeh, T.F. (1998). Blunted Serum Erythropoietin (EPO) Response to Anemia in Polytransfused β-Thalassemia Major (β-Thal.) 752. Pediatr. Res., 43(4): 131–131. https://doi.org/10.1203/00006450-199804001-00773.
Teke, H.U., Cansu, D.U., Yildiz, P., Temiz, G. & Bal, C. (2017). Clinical significance of serum IL-6, TNF-α, Hepcidin, and EPO levels in anaemia of chronic disease and iron deficiency anaemia: The laboratory indicators for anaemia. Biomed. Res., 28(6): 2704-2710.
Motta, I., Bou-Fakhredin, R., Taher, A.T. & Cappellini, M.D. (2020). Beta Thalassemia: New Therapeutic Options beyond Transfusion and Iron Chelation. Drugs, 80(11): 1053–1063. https://doi.org/10.1007/s40265-020-01341-9.
Guimarães, J.S., Cominal, J.G., Silva-Pinto, A.C., Olbina, G., Ginzburg, Y.Z., Nandi, V., Westerman, M., Rivella, S. & de Souza, A.M. (2015). Altered erythropoiesis and iron metabolism in carriers of thalassemia. Eur. J. Haematol., 94(6): 511–518. https://doi.org/10.1111/ejh.12464.
Tienboon, P. & Unachak, K. (2003). Iron deficiency anaemia in childhood and thyroid function. Asia Pac. J. Clin. Nutr., 12(2): 198–202.
Abdulzahra, M.S., Al-Hakeim, H.K. & Ridha, M.M. (2011). Study of the effect of iron overload on the function of endocrine glands in male thalassemia patients. Asian J. Transfus. Sci., 5(2): 127. https://doi.org/10.4103/0973-6247.83236.
Şen, V., Ece, A., Uluca, Ü., Söker, M., Güneş, A., Kaplan, İ., Tan, İ., Yel, S., Mete, N. & Sahin, C., (2015). Urinary early kidney injury molecules in children with beta-thalassemia major. Ren. Fail., 37: 607-613. https://doi.org/10.3109/0886022X.2015.1007871.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.