Evaluating the efficacy of a Plasmodium species-specific Multiplex-Nest-PCR in malaria diagnosis using different DNA isolation methods
Keywords:
Malaria diagnosis, Plasmodium speciation, Multiplex-nested-PCR, EDTA-Blood, DNA templatesAbstract
Malaria diagnosis and speciation still rely on microscopic identification in many settings. But, microscopy is tedious and lack sensitivity, particularly in areas under advanced eradication programs where low-density infections are increasingly reported. Species-specific molecular techniques are highly sensitive and reliable alternatives for Plasmodium parasites detection and speciation. Nevertheless, the efficacy of molecular techniques is directly affected by the purity and quality of isolated DNA templates. A Plasmodium species-specific multiplex-nested-PCR was assessed using DNA templates prepared separately by phenol-chloroform method, a DNA-precipitation commercial kit, and a chromatographic commercial kit from 126 EDTA-preserved whole blood samples. 115 samples were collected from malaria suspicious febrile patients in endemic southern region and 11 malaria positive samples from foreign and national visitors of non-endemic western region of Saudi Arabia. In total, 89 specimens were found malaria positive by at least one diagnostic method, out of which 82 (92%) were detected by microscopy. P. multiplex-N-PCR revealed 89 (100%), 77 (86.5%), and 85 (95.5%) positive samples using DNA templates extracted by the chromatographic kit, the DNA-precipitation kit, and phenol-chloroform standard method, respectively. P. falciparum parasites were detected in 86 samples and P. vivax in three samples from foreign visitors. Thus, P. multiplex-N-PCR applied to DNA templates isolated by chromatographic method achieved the highest sensitivity and was particularly useful for submicroscopic malaria cases in the endemic area where intensive elimination efforts are being deployed.
Downloads
References
WHO (2015). World Malaria Report 2015. Geneva, World Health Organization. https://www.who.int/malaria.
Tuteja, R. (2007). Malaria − an overview. FEBS J., 274(18): 4670–4679. https://doi.org/10.1111/j.1742-4658.2007.05997.x.
Moyes, C.L., Henry, A.J., Golding, N., Huang, Z., Singh, B., Baird, J.K., Newton, P.N., Huffman, M., Duda, K.A., Drakeley, C.J., Elyazar, I.R., Anstey, N.M., Chen, Q., Zommers, Z., Bhatt, S., Gething, P.W. & Hay, S.I. (2014). Defining the geographical range of the Plasmodium knowlesi reservoir. PLoS Negl. Trop. Dis., 8(3): e2780. https://doi.org/10.1371/journal.pntd.0002780.
Sinka, M.E., Bangs, M.J., Manguin, S., Rubio-Palis, Y., Chareonviriyaphap, T., Coetzee, M., Mbogo, C.M., Hemingway, J., Patil, A.P., Temperley, W.H., Gething, P.W., Kabaria, C.W., Burkot, T.R., Harbach, R.E. & Hay, S.I. (2012). A global map of dominant malaria vectors. Parasites Vectors, 5: 69. https://doi.org/10.1186/1756-3305-5-69.
WHO (2016). World Malaria Report 2016. Geneva: World Health Organization. https://www.who.int/malaria.
MOH (2005). Health Statistics Annual Book, Ministry of Health. http://www.moh.gov.sa/statistics/1425/Annual_Report.htm.
Bashwari, L.A., Mandil, A.M., Bahnassy, A.A., Al-Shamsi, M.A. & Bukhari, H.A. (2001). Epidemiological profile of malaria in a university hospital in the eastern region of Saudi Arabia. Saudi Med. J., 22(2): 133–138.
Alkhalife, I.S. (2003). Imported malaria infections diagnosed at the Malaria Referral Laboratory in Riyadh, Saudi Arabia. Saudi Med. J., 24(10): 1068–1072.
Al-Tawfiq, J.A. (2006). Epidemiology of travel-related malaria in a non-malarious area in Saudi Arabia. Saudi Med. J., 27(1): 86–89.
Khan, A.S., Qureshi, F., Shah, A.H. & Malik, S.A. (2002). Spectrum of malaria in Hajj pilgrims in the year 2000. J. Ayub Med. Coll. Abbottabad, 14(4): 19–21.
WHO (2009). Parasitological confirmation of malaria diagnosis: report of a WHO technical consultation. Geneva, 6-8 October 2009. World Health Organization.
Ekawati, L.L., Herdiana, H., Sumiwi, M.E., Barussanah, C., Ainun, C., Sabri, S., Maulana, T., Rahmadyani, R., Maneh, C., Yani, M., Valenti, P., Elyazar, I.R. & Hawley, W.A. (2015). A comprehensive assessment of the malaria microscopy system of Aceh, Indonesia, in preparation for malaria elimination. Malar. J., 14: 240. https://doi.org/10.1186/s12936-015-0746-8.
White, N.J. (2004). Antimalarial drug resistance. J. Clin. Invest., 113(8): 1084–1092. https://doi.org/10.1172/JCI21682.
WHO (2007). Malaria elimination: a field manual for low and moderate endemic countries. Geneva: World Health Organization.
Cheesbrough, M. (2009). Importance of laboratory practice in district health care. In: District Laboratory Practice in Tropical Countries. 2nd edition Updated. Tropical Health Technology. Cambridge University Press. pp. 1-3.
Alves, F.P., Gil, L.H., Marrelli, M.T., Ribolla, P.E., Camargo, E.P. & Da Silva, L.H. (2005). Asymptomatic carriers of Plasmodium spp. as infection source for malaria vector mosquitoes in the Brazilian Amazon. J. Med. Entomol., 42(5): 777–779. https://doi.org/10.1093/jmedent/42.5.777.
Baliraine, F.N., Afrane, Y.A., Amenya, D.A., Bonizzoni, M., Menge, D.M., Zhou, G., Zhong, D., Vardo-Zalik, A.M., Githeko, A.K. & Yan, G. (2009). High prevalence of asymptomatic plasmodium falciparum infections in a highland area of western Kenya: a cohort study. J. Infect. Dis., 200(1): 66–74. https://doi.org/10.1086/599317.
Bousema, T., Okell, L., Felger, I. & Drakeley, C. (2014). Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat. Rev. Microbiol., 12(12): 833–840. https://doi.org/10.1038/nrmicro3364.
Ouédraogo, A.L., Bousema, T., Schneider, P., de Vlas, S.J., Ilboudo-Sanogo, E., Cuzin-Ouattara, N., Nébié, I., Roeffen, W., Verhave, J.P., Luty, A.J. & Sauerwein, R. (2009). Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PloS One, 4(12): e8410. https://doi.org/10.1371/journal.pone.0008410.
Proux, S., Suwanarusk, R., Barends, M., Zwang, J., Price, R.N., Leimanis, M., Kiricharoen, L., Laochan, N., Russell, B., Nosten, F. & Snounou, G. (2011). Considerations on the use of nucleic acid-based amplification for malaria parasite detection. Malar. J., 10: 323. https://doi.org/10.1186/1475-2875-10-323.
Rubio, J.M., Post, R.J., van Leeuwen, W.M., Henry, M.C., Lindergard, G. & Hommel, M. (2002). Alternative polymerase chain reaction method to identify Plasmodium species in human blood samples: the semi-nested multiplex malaria PCR (SnM-PCR). Trans. R. Soc. Trop. Med. Hyg., 96 Suppl 1: S199–S204. https://doi.org/10.1016/s0035-9203(02)90077-5.
Coura, J.R., Suárez-Mutis, M. & Ladeia-Andrade, S. (2006). A new challenge for malaria control in Brazil: asymptomatic Plasmodium infection--a review. Mem. Inst. Oswaldo Cruz, 101(3): 229–237. https://doi.org/10.1590/s0074-02762006000300001.
Al-Harthi, S.A. (2015). Comparison of a Genus-Specific Conventional PCR and a Species-Specific Nested-PCR for Malaria Diagnosis Using FTA Collected Samples from Kingdom of Saudi Arabia. J. Egypt. Soc. Parasitol., 45(3): 457–466. https://doi.org/10.12816/0017906.
Snounou, G., Viriyakosol, S., Zhu, X.P., Jarra, W., Pinheiro, L., do Rosario, V.E., Thaithong, S. & Brown, K.N. (1993). High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol., 61(2): 315–320. https://doi.org/10.1016/0166-6851(93)90077-b.
WHO (1991). Basic Malaria Microscopy. Part I. Learner's Guide, World Health Organization, Geneva.
Al-Harthi, S.A. & Jamjoom, M.B. (2008). PCR assay in malaria diagnosis using filter paper samples from Jazan region, Saudi Arabia. J. Egypt. Soc. Parasitol., 38(3): 693–706.
WHO (2013). World Malaria Report 2013. Geneva: World Health Organization.
Schneider, P., Bousema, J.T., Gouagna, L.C., Otieno, S., van de Vegte-Bolmer, M., Omar, S.A. & Sauerwein, R.W. (2007). Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am. J. Trop. Med. Hyg., 76(3): 470–474. https://doi.org/10.4269/ajtmh.2007.76.470
Hänscheid, T. & Grobusch, M.P. (2002). How useful is PCR in the diagnosis of malaria? Trends Parasitol., 18(9): 395–398. https://doi.org/10.1016/s1471-4922(02)02348-6.
Singh, B., Cox-Singh, J., Miller, A.O., Abdullah, M.S., Snounou, G. & Rahman, H.A. (1996). Detection of malaria in Malaysia by nested polymerase chain reaction amplification of dried blood spots on filter papers. Trans. R. Soc. Trop. Med. Hyg., 90(5): 519–521. https://doi.org/10.1016/s0035-9203(96)90302-8.
Bottius, E., Guanzirolli, A., Trape, J.F., Rogier, C., Konate, L. & Druilhe, P. (1996). Malaria: even more chronic in nature than previously thought; evidence for subpatent parasitaemia detectable by the polymerase chain reaction. Trans. R. Soc. Trop. Med. Hyg., 90(1): 15–19. https://doi.org/10.1016/s0035-9203(96)90463-0.
Okell, L.C., Bousema, T., Griffin, J.T., Ouédraogo, A.L., Ghani, A.C. & Drakeley, C.J. (2012). Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat. Commun., 3: 1237. https://doi.org/10.1038/ncomms2241.
Queipo-Ortuño, M.I., Tena, F., Colmenero, J.D. & Morata, P. (2008). Comparison of seven commercial DNA extraction kits for the recovery of Brucella DNA from spiked human serum samples using real-time PCR. Eur. J. Clin. Microbiol. Infect. Dis., 27(2): 109–114. https://doi.org/10.1007/s10096-007-0409-y.
Podnecky, N.L., Elrod, M.G., Newton, B.R., Dauphin, L.A., Shi, J., Chawalchitiporn, S., Baggett, H.C., Hoffmaster, A.R. & Gee, J.E. (2013). Comparison of DNA extraction kits for detection of Burkholderia pseudomallei in spiked human whole blood using real-time PCR. PloS One, 8(2): e58032. https://doi.org/10.1371/journal.pone.0058032.
Ruiz-Fuentes, J.L., Díaz, A., Entenza, A.E., Frión, Y., Suárez, O., Torres, P., de Armas, Y. & Acosta, L. (2015). Comparison of four DNA extraction methods for the detection of Mycobacterium leprae from Ziehl-Neelsen-stained microscopic slides. Int. J. Mycobacteriol., 4(4): 284–289. https://doi.org/10.1016/j.ijmyco.2015.06.005.
Mauger, F., Dulary, C., Daviaud, C., Deleuze, J.F. & Tost, J. (2015). Comprehensive evaluation of methods to isolate, quantify, and characterize circulating cell-free DNA from small volumes of plasma. Anal. Bioanal. Chem., 407(22): 6873–6878. https://doi.org/10.1007/s00216-015-8846-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.