Mutations in rpoB gene and their association with Rifampicin-resistance levels in clinical isolates of Mycobacterium tuberculosis
Keywords:
Mycobacterium tuberculosis, Rifampicin, rpoB gene, DNA sequencing, Multidrug-resistanceAbstract
Present study was aimed to identify most frequent mutations in rpoB gene region and to evaluate the association between mutations in rpoB gene and resistance levels to Rifampicin in clinical isolates of Mycobacterium tuberculosis of different geographical regions of India. A total of 100 clinical isolates of Mycobacterium tuberculosis were included in this study. Drug susceptibility testing against first line anti-tuberculosis drugs was performed on LJ medium by conventional minimal inhibitory concentration (MIC) method and the mutation(s) in rpoB gene of M. tuberculosis isolates were analyzed by sequencing method. Of the 100 M. tuberculosis isolates, 31 (31.0%) and 18 (18.0%) were found resistant and susceptible for all four first-line anti-tuberculosis drugs. The genetic mutations were observed in 96% (72/75) rifampicin-resistant M. tuberculosis isolates, while 4% (3/75) of rifampicin-resistant isolates did not have any mutation in rpoB gene. The mutation TCG531TTG (Ser531Leu) was found as most common and frequent mutation in 69.3% (52/75) of rifampicin-resistant isolates of M. tuberculosis with MIC level (? 512mg/l). The mutation at codon 511 was associated with low degree (128mg/l) of rifampicin-resistance, deletions at codons 514-516 or substitution at codon 516 were found to be associated with moderate degree (256mg/l) of rifampicin-resistance and mutations at codon 526, 531 were associated with the high degree (512mg/l) of rifampicin-resistance in M. tuberculosis isolates of Indian origin. The findings of this study will be useful for the development of raid and more specific indigenous molecular tools for the early diagnosis of multidrug-resistant tuberculosis in the country.
Downloads
References
WHO (2015). Global tuberculosis report 2015. 20th ed., World Health Organization. 192 pp.
Hasnain, S.E., Amin, A., Siddiqi, N., Shamim, M., Jain, N.K., Rattan, A., Katoch, V.M. & Sharma, S.K. (1998). Molecular genetics of multiple drug resistance (MDR) in Mycobacterium tuberculosis. In: Singhal, R.L. & Sood, O.P. (eds.), Drug resistance: mechanism and management. Proceedings of the Fourth Annual Ranbaxy Science Foundation Symposium. Ranbaxy Science Foundation, New Delhi, India. pp. 35–40.
Somoskovi, A., Parsons, L.M. & Salfinger, M. (2001). The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res., 2(3): 164–168. https://doi.org/10.1186/rr54.
Piersimoni, C. & Scarparo, C. (2003). Relevance of commercial amplification methods for direct detection of Mycobacterium tuberculosis complex in clinical samples. J. Clin. Microbiol., 41(12): 5355–5365. https://doi.org/10.1128/JCM.41.12.5355-5365.2003.
Mäkinen, J., Marttila, H.J., Marjamäki, M., Viljanen, M.K. & Soini, H. (2006). Comparison of two commercially available DNA line probe assays for detection of multidrug-resistant Mycobacterium tuberculosis. J. Clin. Microbiol., 44(2): 350–352. https://doi.org/10.1128/JCM.44.2.350-352.2006.
Traore, H., van Deun, A., Shamputa, I.C., Rigouts, L. & Portaels, F. (2006). Direct detection of Mycobacterium tuberculosis complex DNA and rifampin resistance in clinical specimens from tuberculosis patients by line probe assay. J. Clin. Microbiol., 44(12): 4384–4388. https://doi.org/10.1128/JCM.01332-06.
Lee, A.S., Lim, I.H., Tang, L.L. & Wong, S.Y. (2005). High frequency of mutations in the rpoB gene in rifampin-resistant clinical isolates of Mycobacterium tuberculosis from Singapore. J. Clin. Microbiol., 43(4): 2026–2027. https://doi.org/10.1128/JCM.43.4.2026-2027.2005.
Zakerbostanabad, S., Titov, L.P. & Bahrmand, A.R. (2008). Frequency and molecular characterization of isoniazid resistance in katG region of MDR isolates from tuberculosis patients in southern endemic border of Iran. Infect. Genet. Evol., 8(1): 15–19. https://doi.org/10.1016/j.meegid.2007.09.002.
Zhang, Y. & Yew, W.W. (2009). Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 13(11): 1320–1330.
Das, R., Srivastava, K., Gupta, P., Sharma, V.D., Singh, D., Chauhan, D.S., Singh, H.B. & Katoch, V.M. (2003). Comparison of Etest with MIC method on Lowenstein–Jensen medium for susceptibility testing of Mycobacterium tuberculosis. Curr. Sci., 85(2): 191-193.
Canetti, G., Fox, W., Khomenko, A., Mahler, H.T., Menon, N.K., Mitchison, D.A., Rist, N. & Smelev, N.A. (1969). Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull. World Health Organ., 41(1): 21-43.
Paramasivan, C.N., Chandrasekaran, V., Santha, T., Sudarsanam, N.M. & Prabhakar, R. (1993). Bacteriological investigations for short-course chemotherapy under the tuberculosis programme in two districts of India. Tuber. Lung Dis., 74(1): 23–27. https://doi.org/10.1016/0962-8479(93)90064-5.
van Embden, J.D., Cave, M.D., Crawford, J.T., Dale, J.W., Eisenach, K.D., Gicquel, B., Hermans, P., Martin, C., McAdam, R. & Shinnick, T.M. (1993). Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J. Clin. Microbiol., 31(2): 406–409. https://doi.org/10.1128/jcm.31.2.406-409.1993.
Jou, R., Chen, H.Y., Chiang, C.Y., Yu, M.C. & Su, I.J. (2005). Genetic diversity of multidrug-resistant Mycobacterium tuberculosis isolates and identification of 11 novel rpoB alleles in Taiwan. J. Clin. Microbiol., 43(3): 1390–1394. https://doi.org/10.1128/JCM.43.3.1390-1394.2005.
Herrera, L., Jiménez, S., Valverde, A., García-Aranda, M.A. & Sáez-Nieto, J.A. (2003). Molecular analysis of rifampicin-resistant Mycobacterium tuberculosis isolated in Spain (1996-2001). Description of new mutations in the rpoB gene and review of the literature. Int. J. Antimicrob. Agents, 21(5): 403–408. https://doi.org/10.1016/s0924-8579(03)00036-0.
Yue, J., Shi, W., Xie, J., Li, Y., Zeng, E. & Wang, H. (2003). Mutations in the rpoB gene of multidrug-resistant Mycobacterium tuberculosis isolates from China. J. Clin. Microbiol., 41(5): 2209–2212. https://doi.org/10.1128/JCM.41.5.2209-2212.2003.
Chauhan, D.S., Sharma, R., Parashar, D., Sharma, P., Das, R., Chahar, M., Singh, A.V., Singh, P.K., Katoch, K. & Katoch, V.M. (2016). Early detection of multidrug resistant (MDR) Mycobacterium tuberculosis in a single tube with in-house designed fluorescence resonance energy transfer (FRET) probes using real-time PCR. Indian J. Exp. Biol., 54(4): 229–236.
Ramaswamy, S. & Musser, J.M. (1998). Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis., 79(1): 3–29. https://doi.org/10.1054/tuld.1998.0002.
Drobniewski, F.A. & Wilson, S.M. (1998). The rapid diagnosis of isoniazid and rifampicin resistance in Mycobacterium tuberculosis-a molecular story. J. Med. Microbiol., 47(3): 189–196. https://doi.org/10.1099/00222615-47-3-189.
Gupta, P., Jadaun, G.P., Das, R., Gupta, U.D., Srivastava, K., Chauhan, A., Sharma, V.D., Chauhan, D.S. & Katoch, V.M. (2006). Simultaneous ethambutol & isoniazid resistance in clinical isolates of Mycobacterium tuberculosis. Indian J. Med. Res., 123(2): 125–130.
Madison, B., Robinson-Dunn, B., George, I., Gross, W., Lipman, H., Metchock, B., Sloutsky, A., Washabaugh, G., Mazurek, G. & Ridderhof, J. (2002). Multicenter evaluation of ethambutol susceptibility testing of mycobacterium tuberculosis by agar proportion and radiometric methods. J. Clin. Microbiol., 40(11): 3976–3979. https://doi.org/10.1128/JCM.40.11.3976-3979.2002.
Musser, J.M. (1995). Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev., 8(4): 496–514. https://doi.org/10.1128/CMR.8.4.496.
Qazi, O., Rahman, H., Tahir, Z., Qasim, M., Khan, S., Ahmad Anjum, A., Yaqub, T., Tayyab, M., Ali, N. & Firyal, S. (2014). Mutation pattern in rifampicin resistance determining region of rpoB gene in multidrug-resistant Mycobacterium tuberculosis isolates from Pakistan. Int. J. Mycobacteriol., 3(3): 173–177. https://doi.org/10.1016/j.ijmyco.2014.06.004.
Siddiqi, N., Das, R., Pathak, N., Banerjee, S., Ahmed, N., Katoch, V.M. & Hasnain, S.E. (2004). Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a tap-like efflux pump. Infection, 32(2): 109–111. https://doi.org/10.1007/s15010-004-3097-x.
Siddiqi, N., Shamim, M., Hussain, S., Choudhary, R.K., Ahmed, N., Prachee, Banerjee, S., Savithri, G.R., Alam, M., Pathak, N., Amin, A., Hanief, M., Katoch, V.M., Sharma, S.K. & Hasnain, S.E. (2002). Molecular characterization of multidrug-resistant isolates of Mycobacterium tuberculosis from patients in North India. Antimicrob. Agents Chemother., 46(2): 443–450. https://doi.org/10.1128/AAC.46.2.443-450.2002.
Mani, C., Selvakumar, N., Narayanan, S. & Narayanan, P.R. (2001). Mutations in the rpoB gene of multidrug-resistant Mycobacterium tuberculosis clinical isolates from India. J. Clin. Microbiol., 39(8): 2987–2990. https://doi.org/10.1128/JCM.39.8.2987-2990.2001.
Valim, A.R., Rossetti, M.L., Ribeiro, M.O. & Zaha, A. (2000). Mutations in the rpoB gene of multidrug-resistant Mycobacterium tuberculosis isolates from Brazil. J. Clin. Microbiol., 38(8): 3119–3122. https://doi.org/10.1128/JCM.38.8.3119-3122.2000.
Afanas'ev, M.V., Ikryannikova, L.N., Il'ina, E.N., Sidorenko, S.V., Kuz'min, A.V., Larionova, E.E., Smirnova, T.G., Chernousova, L.N., Kamaev, E.Y., Skorniakov, S.N., Kinsht, V.N., Cherednichenko, A.G. & Govorun, V.M. (2007). Molecular characteristics of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis isolates from the Russian Federation. J. Antimicrob. Chemother., 59(6): 1057–1064. https://doi.org/10.1093/jac/dkm086.
Bobadilla-del-Valle, M., Ponce-de-Leon, A., Arenas-Huertero, C., Vargas-Alarcon, G., Kato-Maeda, M., Small, P.M., Couary, P., Ruiz-Palacios, G.M. & Sifuentes-Osornio, J. (2001). rpoB Gene mutations in rifampin-resistant Mycobacterium tuberculosis identified by polymerase chain reaction single-stranded conformational polymorphism. Emerg. Infect. Dis., 7(6): 1010–1013. https://doi.org/10.3201/eid0706.010615.
Obata, S., Zwolska, Z., Toyota, E., Kudo, K., Nakamura, A., Sawai, T., Kuratsuji, T. & Kirikae, T. (2006). Association of rpoB mutations with rifampicin resistance in Mycobacterium avium. Int. J. Antimicrob. Agents, 27(1): 32–39. https://doi.org/10.1016/j.ijantimicag.2005.09.015.
Negi, S.S., Singh, U., Gupta, S., Khare, S., Rai, A. & Lal, S. (2009). Characterization of rpo B Gene for Detection of Rifampicin Drug Resistance by SSCP and Sequence Analysis. Indian J. Med. Microbiol., 27(3): 226–230. https://doi.org/10.4103/0255-0857.45364.
Jamieson, F.B., Guthrie, J.L., Neemuchwala, A., Lastovetska, O., Melano, R.G. & Mehaffy, C. (2014). Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis. J. Clin. Microbiol., 52(6): 2157–2162. https://doi.org/10.1128/JCM.00691-14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.