Cuticular Biochemistry: Lambda-Cyhalothrin Induced Alterations in Mutant Drosophila melanogaster

Authors

  • Harendra N. Sharma Toxicology Laboratory, Department of Zoology, School of Life Sciences, Khandari Campus, Dr. B.R. Ambedkar University, Agra-282002 (U.P.), India.
  • Prabhu N. Saxena Toxicology Laboratory, Department of Zoology, School of Life Sciences, Khandari Campus, Dr. B.R. Ambedkar University, Agra-282002 (U.P.), India.
  • Vishnu Kumar Upadhyay Toxicology Laboratory, Department of Zoology, School of Life Sciences, Khandari Campus, Dr. B.R. Ambedkar University, Agra-282002 (U.P.), India.
  • Namrata Rana Toxicology Laboratory, Department of Zoology, School of Life Sciences, Khandari Campus, Dr. B.R. Ambedkar University, Agra-282002 (U.P.), India.
  • Nishi Saxena Toxicology Laboratory, Department of Zoology, School of Life Sciences, Khandari Campus, Dr. B.R. Ambedkar University, Agra-282002 (U.P.), India.

Keywords:

Insect, Cuticle, Pyrethroid

Abstract

Derivatives of natural pyrethrum, synthetic pyrethroids, are well-established neurotoxins. However, they do interfere with the functioning of metabolic processes; the most important of these is chitin metabolism, a key process in the development of insects. Type II synthetic pyrethroid, lambda-cyhalothrin, when orally fed to Drosophila melanogaster revealed its efficacy in chitin synthesis modulation. Total proteins, glucosamine, N-acetylglucosamine, chitinase activity and chitin content exhibit significant changes in the final developmental stage, the adults. A reduction in chitin synthesis is suggestive of interference in polymerization process which is a must for cuticle formation. Involvement of lambda-cyhalothrin in chitin synthesis has been sought to be an additional mode of action, other than its neurotoxic nature.

Downloads

Download data is not yet available.

References

Brookhart, G.L. & Kramer, K.J. (1990). Proteinases in molting fluid of the tobacco hornworm, Manduca sexta. Insect Biochem., 20(5): 467–477. https://doi.org/10.1016/0020-1790(90)90028-S.

Finney, D.J. (1971). Probit Analysis. 3rd Ed., Cambridge University Press, Cambridge. 333 pp.

Fisher, R.A. & Yates, F. (1963). Statistical Tables for Biological, Agricultural and Medical Research. 6th Ed., Oliver & Boyd, London. 146 pp.

Gardell, S. (1958). Determination of Hexosamines. In: D. Glick (ed.), Methods of Biochemical Analysis, Vol. 6, Interscience Publishers, New York. 289 pp.

Hackman, R.H. (1954). Studies on chitin. I. Enzymic degradation of chitin and chitin esters. Aust. J. Biol. Sci., 7(2): 168–178. https://doi.org/10.1071/bi9540168.

Hajjar, N.P. (1979). Mechanism of the insecticidal action of diflubenzuron. Diss. Abstr. Int. B, 39(8): 3676.

Karaiyan, K. & Thangaraj, T. (1999). Exochitinase activity in the pharate pupal cuticle of the moringa pest, Eupterote mollifera and the coconut pest, Oryctes rhinoceros. Indian Journal of Entomology, 61(3): 226-235.

Kramer, K.J., Hopkins, T.L. & Schaefer, J. (1995). Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem. Mol. Biol., 25(10): 1067–1080. https://doi.org/10.1016/0965-1748(95)00053-4.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1): 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6.

Merzendorfer, H. & Zimoch, L. (2003). Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol., 206(24): 4393–4412. https://doi.org/10.1242/jeb.00709.

Muzzarelli, R. (1974). A future ecological tragedy? Insecticidal inhibition of the synthesis of chitin. Inquinamento, 16(3): 29-30.

Reissig, J.L., Strominger, J.L. & Leloir, L.F. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem., 217(2): 959–966. https://doi.org/10.1016/S0021-9258(18)65959-9.

Saxena, S.C. & Kumar, V. (1981). Blockage in chitin biosynthesis chain in the grasshopper Chrotogonus trachypterus treated with diflubenzuron and penfluron. Indian J. Exp. Biol., 19: 1199–1200.

Soderlund, D.M. & Knipple, D.C. (2003). The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol., 33(6): 563–577. https://doi.org/10.1016/S0965-1748(03)00023-7.

Tufail, N. & Shakoori, A.R. (1992). Alphamethrin toxicity in Tribolium castaneum larvae. Pak. J. Zool., 24(1): 59-70.

Verma, A. & Nath, G. (1995). Toxicity of carbaryl on hemolymph protein of late larvae and pharate pupae of Spodoptera litura Fab. Indian Journal of Entomology, 57(2): 83-88.

Wouters, W. & van den Bercken, J. (1978). Action of pyrethroids. Gen. Pharmacol., 9(6): 387–398. https://doi.org/10.1016/0306-3623(78)90023-x.

Downloads

Abstract views: 60 / PDF downloads: 14

Published

2016-07-01

How to Cite

Sharma, H. N., Saxena, P. N., Upadhyay, V. K., Rana, N., & Saxena, N. (2016). Cuticular Biochemistry: Lambda-Cyhalothrin Induced Alterations in Mutant Drosophila melanogaster. Advances in BioScience, 7(3), 76–78. Retrieved from https://journals.sospublication.co.in/ab/article/view/209

Issue

Section

Articles