The Effect of Sulfated Glycosaminoglycans Extracted from Acanthaster planci on Full Thickness Excision Wound Healing in Animal Model
Keywords:
Sulfated Glycosaminoglycans, Acanthaster planci, Starfish, Microscopy, Wound healingAbstract
In this study, sulfated glycosaminoglycans (GAGs) was extracted from Acanthaster planci and its wound healing effects was assessed. Macroscopic examination revealed significant (p<0.05) contraction percentage (%) of wound on each observation (Day 1, Day 6 and Day 12) as compared to control group. Microscopic evaluations using light microscope, scanning, and transmission electron microscope showed that sulfated GAGs from A. planci enhanced epithelial cells migration and fibroblasts proliferation, and stimulate dense organisation of collagen fibers on the 12th day of observation, significantly (p<0.05) compared to control group. The microscopic study concluded that the second-intention excisional wound healing occurs faster in the GAGs treated group as compared to the saline-treated control group, while microscopical study using light microscope, scanning and transmission electron microscope revealed that the GAGs treated group have a significant effect in enhanced epithelization formation, fibroblasts proliferation and collagen fibers organization parameters as compared to the control group.
Downloads
References
Yamada, S., Sugahara, K. & Ozbek, S. (2011). Evolution of glycosaminoglycans: Comparative biochemical study. Commun. Integr. Biol., 4(2): 150–158. https://doi.org/10.4161/cib.4.2.14547.
Gallo, R.L. & Bernfield, M. (1996). Proteoglycans and their role in wound repair. In: Clark, R.A.F. (Ed.), The molecular and cellular biology of wound repair. 2nd ed., Plenum Press. New York, NY. pp. 475–492.
Hocking, A.M., Shinomura, T. & McQuillan, D.J. (1998). Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol., 17(1): 1–19. https://doi.org/10.1016/s0945-053x(98)90121-4.
Parkinson, J.F., Koyama, T., Bang, N.U. & Preissner, K.T. (1992). Thrombomodulin: an anticoagulant cell surface proteoglycan with physiologically relevant glycosaminoglycan moiety. Adv. Exp. Med. Biol., 313: 177–188. https://doi.org/10.1007/978-1-4899-2444-5_18.
Shiomi, K., Nagai, K., Yamanaka, H. & Kikuchi, T. (1989). Inhibitory Effect of Anti-Inflammatory Agents on Cutaneous Capillary Leakage Induced by Six Marine Venoms. Nippon Suisan Gakkaishi, 55: 131– 134. https://doi.org/10.2331/suisan.55.131.
Shiroma, N., Noguchi, K., Matsuzaki, T., Ojiri, Y., Hirayama, K. & Sakanashi, M. (1994). Haemodynamic and haematologic effects of Acanthaster planci venom in dogs. Toxicon, 32(10): 1217–1225. https://doi.org/10.1016/0041-0101(94)90351-4.
Mutee, A.F., Salhimi, S.M., Ghazali, F.C., Al-Hassan, F.M., Lim, C.P., Ibrahim, K. & Asmawi, M.Z. (2012). Apoptosis induced in human breast cancer cell line by Acanthaster planci starfish extract compared to tamoxifen. Afr. J. Pharm. Pharmacol., 6(3): 129–134. https://doi.org/10.5897/AJPP11.208.
Tan, C.C., Karim, A.A., Latiff, A.A., Gan, C.Y. & Ghazali, F.C. (2013). Extraction and characterization of pepsin-solubilized collagen from the body wall of crown-of-thorns Starfish (Acanthaster planci). Int. Food Res. J., 20(6): 3013-3020.
Trotter, J.A., Lyons-Levy, G., Luna, D., Koob, T.J., Keene, D.R. & Atkinson, M.A. (1996). Stiparin: a glycoprotein from sea cucumber dermis that aggregates collagen fibrils. Matrix Biol., 15(2): 99–110. https://doi.org/10.1016/s0945-053x(96)90151-1.
Masre, S.F., Yip, G.W., Sirajudeen, K.N. & Ghazali, F.C. (2011). Quantitative analysis of sulphated glycosaminoglycans content of Malaysian sea cucumber Stichopus hermanni and Stichopus vastus. Nat. Prod. Res., 26(7): 684–689. https://doi.org/10.1080/14786419.2010.545354
Ledin, J., Staatz, W., Li, J.P., Götte, M., Selleck, S., Kjellén, L. & Spillmann, D. (2004). Heparan sulfate structure in mice with genetically modified heparan sulfate production. J. Biol. Chem., 279(41): 42732–42741. https://doi.org/10.1074/jbc.M405382200.
Staatz, W.D., Toyoda, H., Kinoshita-Toyoda, A., Chhor, K. & Selleck S.B. (2001). Analysis of Proteoglycans and Glycosaminoglycans from Drosophila. In: Iozzo, R.V. (eds), Proteoglycan Protocols. Methods in Molecular Biology, vol 171. Humana Press. pp. 41-52. https://doi.org/10.1385/1-59259-209-0:041.
Zou, X.H., Foong, W.C., Cao, T., Bay, B.H., Ouyang, H.W. & Yip, G.W. (2004). Chondroitin sulfate in palatal wound healing. J. Dent. Res., 83(11): 880–885. https://doi.org/10.1177/154405910408301111.
Sardari, K., Dehgan, M.M., Mohri, M., Emami, M.R., Mirshahi, A., Maleki, M., Barjasteh, M.N. & Aslani, M.R. (2006). Macroscopic aspects of wound healing (contraction and epithelialisation) after topical administration of allicin in dogs. Comp. Clin. Pathol., 15(4): 231–235. https://doi.org/10.1007/s00580-006-0634-2.
Cross, S.E., Naylor, I.L., Coleman, R.A. & Teo, T.C. (1995). An experimental model to investigate the dynamics of wound contraction. Br. J. Plast. Surg., 48(4): 189–197. https://doi.org/10.1016/0007-1226(95)90001-2.
Olczyk, P., Mencner, Ł. & Komosinska-Vassev, K. (2014). The role of the extracellular matrix components in cutaneous wound healing. Biomed Res. Int., 2014: Article ID 747584. https://doi.org/10.1155/2014/747584.
Mulder, G.D., Patt, L.M., Sanders, L., Rosenstock, J., Altman, M.I., Hanley, M.E. & Duncan, G.W. (1994). Enhanced healing of ulcers in patients with diabetes by topical treatment with glycyl-l-histidyl-l-lysine copper. Wound Repair Regen., 2(4): 259–269. https://doi.org/10.1046/j.1524-475X.1994.20406.x.
Croft, C.B. & Tarin, D. (1970). Ultrastructural studies of wound healing in mouse skin. I. Epithelial behaviour. J. Anat., 106: 63–77.
Holbrook, K.A. & Odland, G.F. (1975). The fine structure of developing human epidermis: light, scanning, and transmission electron microscopy of the periderm. J. Invest. Dermatol., 65(1): 16–38. https://doi.org/10.1111/1523-1747.ep12598029.
Piaggesi, A., Viacava, P., Rizzo, L., Naccarato, G., Baccetti, F., Romanelli, M., Zampa, V. & Del Prato, S. (2003). Semiquantitative analysis of the histopathological features of the neuropathic foot ulcer: effects of pressure relief. Diabetes care, 26(11): 3123–3128. https://doi.org/10.2337/diacare.26.11.3123.
Rajabi, M.A. & Rajabi, F. (2007). The effect of estrogen on wound healing in rats. Pak. J. Med. Sci., 23(3): 349-352.
Bell, P.B. & Revel, J.P. (1980). Application of scanning electron microscopy to cells and tissues in culture. In: Hodges, G.M. & Hallowes, R.C. (eds), Biomedical Research Applications of Scanning Electron Microscopy, Vol. 2, Academic Press, London, pp. 1-63.
Braiman-Wiksman, L., Solomonik, I., Spira, R. & Tennenbaum, T. (2007). Novel insights into wound healing sequence of events. Toxicol. Pathol., 35(6): 767–779. https://doi.org/10.1080/01926230701584189.
Escámez, M.J., García, M., Larcher, F., Meana, A., Muñoz, E., Jorcano, J.L. & Del Río, M. (2004). An in vivo model of wound healing in genetically modified skin-humanized mice. J. Invest. Dermatol., 123(6): 1182–1191. https://doi.org/10.1111/j.0022-202X.2004.23473.x.
Sarkar, A. (2008). The effect of Stromal cell Derived Factor-1 (SDF-1) and collagen-GAG (Glycosaminoglycan) scaffold on skin wound healing. MS Thesis. Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Ojeh, N., Hiilesvuo, K., Wärri, A., Salmivirta, M., Henttinen, T. & Määttä, A. (2008). Ectopic expression of syndecan-1 in basal epidermis affects keratinocyte proliferation and wound re-epithelialization. J. Invest. Dermatol., 128(1): 26–34. https://doi.org/10.1038/sj.jid.5700967.
Priest, R.E. (1972). Cellular replication and specialized function of fibroblasts. J. Invest. Dermatol., 59(1): 35–39. https://doi.org/10.1111/1523-1747.ep12625741.
Deodhar, A.K. & Rana, R.E. (1997). Surgical physiology of wound healing: a review. J. Postgrad. Med., 43(2): 52–56.
Clark, R.A., Lin, F., Greiling, D., An, J. & Couchman, J.R. (2004). Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan. J. Invest. Dermatol., 122(2): 266–277. https://doi.org/10.1046/j.0022-202X.2004.22205.x.
Faassen, A.E., Schrager, J.A., Klein, D.J., Oegema, T.R., Couchman, J.R. & McCarthy, J.B. (1992). A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J. Cell Biol., 116(2): 521–531. https://doi.org/10.1083/jcb.116.2.521.
Greiling, D. & Clark, R.A. (1997). Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J. Cell Sci., 110(7): 861–870. https://doi.org/10.1242/jcs.110.7.861.
Shivananda Nayak, B., Sivachandra Raju, S., Orette, F.A. & Chalapathi Rao, A.V. (2007). Effects of Hibiscus rosa sinensis L (Malvaceae) on wound healing activity: a preclinical study in a Sprague Dawley rat. Int. J. Low. Extrem. Wounds, 6(2): 76–81. https://doi.org/10.1177/1534734607302840.
Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. (2014). Essential cell biology. 4th edition, Garland Science, Taylor & Francis Group, New York, pp. 689-690. https://doi.org/10.1201/9781315815015.
Kirker, K.R. (2003). Glycosaminoglycan hydrogels for wound healing. Ph.D. Thesis, Dept. of Bioengineering, University of Utah, Salt Lake City, UT.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.