Botanical and Protein Sweeteners

Authors

  • O. O. Fawibe Department of Biological Sciences, Federal University of Agriculture, P.M.B 2240, Abeokuta, Ogun State, Nigeria.
  • O. G. Ogunyale Department of Biological Sciences, Federal University of Agriculture, P.M.B 2240, Abeokuta, Ogun State, Nigeria.
  • A. A. Ajiboye Department of Biological Sciences, P.M.B. 4494, Osun State University, Osogbo, Osun State, Nigeria.
  • D. A. Agboola Department of Biological Sciences, Federal University of Agriculture, P.M.B 2240, Abeokuta, Ogun State, Nigeria.

Keywords:

Nutritive and Non-Nutritive Sweeteners, Protein sweetener, Natural Sugar, Artificial Sugar

Abstract

Plant species with unusual taste properties such as bitterness, sourness or sweetness and others with a taste- modifying components; have long been known to man, although their exploitation has been limited. Exponential growth in the number of patients suffering from diseases caused by the consumption of sugar has become a threat to mankind's health. Artificial low-calorie sweeteners available in the market may have severe side effects. It takes time to figure out the long-term side effects and by the time these are established, they are replaced by a new low-calorie sweetener. Saccharine has been used for centuries to sweeten foods and beverages without calories or carbohydrate. It was also used on a large scale during the sugar shortage of the two world wars but was abandoned as soon as it was linked with the development of bladder cancer. Naturally occurring sweet and taste modifying proteins (Thaumatin, Curculin, Miraculin, Brazzein, Pentadin, Monellin, Mabinlin) present in  plants such as Thaumatococcus daniellii (Marantaceae), Curculigo latifolia (Hypoxidaceae), Synsepalum dulcificum (Sapotaceae), Pentadiplandra brazzeana (Pentadiplandraceae), Dioscoreophyllum cumminsii (Menispermaceae), Capparis masaikai (Capparaceae) are being seen as potential replacements for the currently available artificial low calorie sweeteners. Most protein sweetener plants such as S. dulcificum, P. brazzeana, C. masaikai, are shrubs; C. latifolia, T. daniellii, are perennial herbs while D. Cumminsii is an annual liana.

Downloads

Download data is not yet available.

References

Barre, A., Van Damme, E.J., Peumans, W.J. & Rougé, P. (1997). Curculin, a sweet-tasting and taste-modifying protein, is a non-functional mannose-binding lectin. Plant Mol. Biol., 33(4): 691–698. https://doi.org/10.1023/a:1005704616565.

Birch, G.G. (2000). Ingredients Handbook – Sweeteners. (Ingredients Handbook Series). Leatherhead Food Research Association.

Buchanan, R. (1999). A Weaver's Garden: Growing Plants for Natural Dyes and Fibers. Dover Publications, New York, p. 11-43.

Damak, S., Rong, M., Yasumatsu, K., Kokrashvili, Z., Varadarajan, V., Zou, S., Jiang, P., Ninomiya, Y. & Margolskee, R.F. (2003). Detection of sweet and umami taste in the absence of taste receptor T1r3. Science, 301(5634): 850–853. https://doi.org/10.1126/science.1087155.

Facciola, S. (1998). Cornucopia II: A Source Book of Edible Plants. Kampung Publications, Vista (CA), USA, p 149.

Faus, I. (2000). Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl. Microbiol. Biotechnol., 53(2): 145–151. https://doi.org/10.1007/s002530050001.

Green, C. (1999). Thaumatin: a natural flavour ingredient. World Rev. Nutr. Diet., 85: 129–132. https://doi.org/10.1159/000059716.

Guan, R.J., Zheng, J.M., Hu, Z. & Wang, D.C. (2000). Crystallization and preliminary X-ray analysis of the thermostable sweet protein mabinlin II. Acta Crystallogr. D Biol. Crystallogr., 56: 918–919. https://doi.org/10.1107/s0907444900005850.

Guan, Z.Y., Hellekant, G. & Yan, W. (1995). Expression of sweet protein brazzein by Saccharomyces cerevisiae. Chem. Senses, 20: 701.

Halliday, J. (2008). Natural sweetener race hots up with Nutrinova break-through. https://www.foodnavigator.com/Article/2008/06/27/Natural-sweetener-race-hots-up-with-Nutrinova-break-through.

Hellekant, G. & Danilova, V. (2005). Brazzein a Small, Sweet Protein: Discovery and Physiological Overview. Chem. Senses, 30: i88–i89. https://doi.org/10.1093/chemse/bjh127.

Higginbotham, J.D. (1986). Talin protein (Thaumatin). In: O’Brien-Nabors, L. & Gelardi, R.C. (eds), Alternative Sweeteners, Marcel Dekker, New York. pp. 103-134.

Hung, L.W., Kohmura, M., Ariyoshi, Y. & Kim, S.H. (1999). Structural differences in D and L-monellin in the crystals of racemic mixture. J. Mol. Biol., 285(1): 311–321. https://doi.org/10.1006/jmbi.1998.2308.

Igeta, H., Tamura, Y., Nakaya, K., Nakamura, Y. & Kurihara, Y. (1991). Determination of disulfide array and subunit structure of taste-modifying protein, miraculin. Biochim. Biophys. Acta, 1079(3): 303–307. https://doi.org/10.1016/0167-4838(91)90073-9.

Inoue, M., Reed, D.R., Li, X., Tordoff, M.G., Beauchamp, G.K. & Bachmanov, A.A. (2004). Allelic variation of the Tas1r3 taste receptor gene selectively affects behavioral and neural taste responses to sweeteners in the F2 hybrids between C57BL/6ByJ and 129P3/J mice. J. Neurosci., 24(9): 2296–2303. https://doi.org/10.1523/JNEUROSCI.4439-03.2004.

Izawa, H., Ota, M., Kohmura, M. & Ariyoshi, Y. (1996). Synthesis and characterization of the sweet protein brazzein. Biopolymers, 39(1): 95–101. https://doi.org/10.1002/(sici)1097-0282(199607)39:1<95::aid-bip10>3.0.co;2-b.

Jin, Z., Danilova, V., Assadi-Porter, F.M., Aceti, D.J., Markley, J.L. & Hellekant, G. (2003). Critical regions for the sweetness of brazzein. FEBS Lett., 544(1-3): 33–37. https://doi.org/10.1016/s0014-5793(03)00383-1.

Kaneko, R. & Kitabatake, N. (1999). Heat-induced formation of intermolecular disulfide linkages between thaumatin molecules that do not contain cysteine residues. J. Agric. Food Chem., 47(12): 4950–4955. https://doi.org/10.1021/jf990267l.

Kocyan, A. (2007). The discovery of polyandry in Curculigo (Hypoxidaceae): Implications for Androecium Evolution of Asparagoid Monocotyledons. Ann. Bot., 100(2): 241–248. https://doi.org/10.1093/aob/mcm091.

Kohmura, M., Nio, N. & Ariyoshi, Y. (1992). Solid-phase synthesis of [AsnA16]-, [AsnA22]-, [GlnA25]-, and [AsnA26]monellin, analogues of the sweet protein monellin. Biosci. Biotechnol. Biochem., 56(3): 472–476. https://doi.org/10.1271/bbb.56.472.

Kohmura, M. & Ariyoshi, Y. (1998). Chemical synthesis and characterization of the sweet protein mabinlin II. Biopolymers, 46(4): 215–223. https://doi.org/10.1002/(SICI)1097-0282(19981005)46:4<215::AID-BIP3>3.0.CO;2-S.

Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., Nakanishi, S., Jingami, H. & Morikawa, K. (2000). Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature, 407(6807): 971–977. https://doi.org/10.1038/35039564.

Kurihara Y. (1992). Characteristics of antisweet substances, sweet proteins, and sweetness-inducing proteins. Crit. Rev. Food Sci. Nutr., 32(3): 231–252. https://doi.org/10.1080/10408399209527598.

Lee, S.Y., Lee, J.H., Chang, H.J., Cho, J.M., Jung, J.W. & Lee, W. (1999). Solution structure of a sweet protein single-chain monellin determined by nuclear magnetic resonance and dynamical simulated annealing calculations. Biochemistry, 38(8): 2340–2346. https://doi.org/10.1021/bi9822731.

Levine, A.S., Kotz, C.M. & Gosnell, B.A. (2003). Sugars: hedonic aspects, neuroregulation, and energy balance. Am. J. Clin. Nutr., 78(4): 834S–842S. https://doi.org/10.1093/ajcn/78.4.834S.

Liu, X., Maeda, S., Hu. Z., Aiuchi, T., Nakaya, K. & Kurihara, Y. (1993). Purification, complete amino acid sequence and structural characterization of the heat-stable sweet protein, mabinlin II. Eur. J. Biochem., 211(1-2): 281–287. https://doi.org/10.1111/j.1432-1033.1993.tb19896.x.

Matsuyama, T., Satoh, M., Nakata, R., Aoyama, T. & Inoue, H. (2009). Functional expression of miraculin, a taste-modifying protein in Escherichia coli. J. Biochem., 145(4): 445–450. https://doi.org/10.1093/jb/mvn184.

Ming, D. & Hellekant, G. (1994). Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett., 355(1): 106–108. https://doi.org/10.1016/0014-5793(94)01184-2.

Nelson, G., Chandrashekar, J., Hoon, M.A., Feng, L., Zhao, G., Ryba, N.J. & Zuker, C.S. (2002). An amino-acid taste receptor. Nature, 416(6877): 199–202. https://doi.org/10.1038/nature726.

Nelson, G., Hoon, M.A., Chandrashekar, J., Zhang, Y., Ryba, N.J. & Zuker, C.S. (2001). Mammalian sweet taste receptors. Cell, 106(3): 381–390. https://doi.org/10.1016/s0092-8674(01)00451-2.

Nirasawa, S., Nishino, T., Katahira, M., Uesugi, S., Hu, Z. & Kurihara, Y. (1994). Structures of heat-stable and unstable homologues of the sweet protein mabinlin. The difference in the heat stability is due to replacement of a single amino acid residue. Eur. J. Biochem., 223(3): 989–995. https://doi.org/10.1111/j.1432-1033.1994.tb19077.x.

Onwueme, I.C., Onochie, B.E. & Safowora, E.A. (1979). Cultivation of T. daniellii - The sweetener. World Crops, p. 106.

Palomares, O., Alcántara, M., Quiralte, J., Villalba, M., Garzón, F. & Rodríguez, R. (2008). Airway disease and thaumatin-like protein in an olive-oil mill worker. N. Engl. J. Med., 358(12): 1306–1308. https://doi.org/10.1056/NEJMc0707778.

Pfeiffer, J.F., Boulton, R.B. & Noble, A.C. (2000). Modeling the sweetness response using time–intensity data. Food Qual. Preference, 11(1): 129–138. https://doi.org/10.1016/S0950-3293(99)00036-1.

Pinget, M. & Boullu-Sanchis, S. (2002). Les bases physiologiques des troubles de l'insulinosécrétion [Physiological basis of insulin secretion abnormalities]. Diabetes Metab., 28: 4S21–4S32.

Mauch, F., Hertig, C., Rebmann, G., Bull, J. & Dudler, R. (1991). A wheat glutathione-S-transferase gene with transposon-like sequences in the promoter region. Plant Mol. Biol., 16(6): 1089–1091. https://doi.org/10.1007/BF00016083.

Singh, N.K., Nelson, D.E., Kuhn, D., Hasegawa, P.M. & Bressan, R.A. (1989). Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential. Plant Physiol., 90(3): 1096–1101. https://doi.org/10.1104/pp.90.3.1096.

Slater, J. (2007). To make Lemons into Lemonade, Try 'Miracle Fruit’. Wall Street Journal. Retrieved from https://www.wsj.com/articles/SB117522147769754148.

Stein, J. (2002). UW–Madison professor makes a sweet discovery. Wisconsin State Journal.

Suzuki, M., Kurimoto, E., Nirasawa, S., Masuda, Y., Hori, K., Kurihara, Y., Shimba, N., Kawai, M., Suzuki, E. & Kato, K. (2004). Recombinant curculin heterodimer exhibits taste-modifying and sweet-tasting activities. FEBS Lett., 573(1-3): 135–138. https://doi.org/10.1016/j.febslet.2004.07.073.

Tancredi, T., Pastore, A., Salvadori, S., Esposito, V. & Temussi, P.A. (2004). Interaction of sweet proteins with their receptor. A conformational study of peptides corresponding to loops of brazzein, monellin and thaumatin. Eur. J. Biochem., 271(11): 2231–2240. https://doi.org/10.1111/j.1432-1033.2004.04154.x.

Temussi, P.A. (2002). Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. FEBS Lett., 526(1-3): 1–4. https://doi.org/10.1016/s0014-5793(02)03155-1.

Theerasilp, S. & Kurihara, Y. (1988). Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J. Biol. Chem., 263(23): 11536–11539. https://doi.org/10.1016/S0021-9258(18)37991-2.

Theerasilp, S., Hitotsuya, H., Nakajo, S., Nakaya, K., Nakamura, Y. & Kurihara, Y. (1989). Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin. J. Biol. Chem., 264(12): 6655–6659. https://doi.org/10.1016/S0021-9258(18)83477-9.

Tomlinson, P.B. (1961). Morphological and anatomical characteristics of the Marantaceae. J. Linn. Soc. London, Bot., 58(370): 55–78. https://doi.org/10.1111/j.1095-8339.1961.tb01080.x.

van der Wel, H., Larson, G., Hladik, A., Hladik, C.M., Hellekant, G. & Glaser, D. (1989). Isolation and characterization of pentadin, the sweet principle of Pentadiplandra brazzeana Baillon. Chem. Senses, 14(1): 75–79. https://doi.org/10.1093/chemse/14.1.75.

van der Wel, H. & Loeve, K. (1972). Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur. J. Biochem., 31(2): 221–225. https://doi.org/10.1111/j.1432-1033.1972.tb02522.x.

Yamashita, H., Theerasilp, S., Aiuchi, T., Nakaya, K., Nakamura, Y. & Kurihara, Y. (1990). Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin. J. Biol. Chem., 265(26): 15770–15775. https://doi.org/10.1016/S0021-9258(18)55464-8.

Zemanek, E.C. & Wasserman, B.P. (1995). Issues and advances in the use of transgenic organisms for the production of thaumatin, the intensely sweet protein from Thaumatococcus danielli. Crit. Rev. Food Sci. Nutr., 35(5): 455–466. https://doi.org/10.1080/10408399509527709.

Zhao, G.Q., Zhang, Y., Hoon, M.A., Chandrashekar, J., Erlenbach, I., Ryba, N.J. & Zuker, C.S. (2003). The receptors for mammalian sweet and umami taste. Cell, 115(3): 255–266. https://doi.org/10.1016/s0092-8674(03)00844-4.

Downloads

Abstract views: 23 / PDF downloads: 11

Published

2014-10-01

How to Cite

Fawibe, O. O., Ogunyale, O. G., Ajiboye, A. A., & Agboola, D. A. (2014). Botanical and Protein Sweeteners. Advances in BioScience, 5(4), 169–187. Retrieved from https://journals.sospublication.co.in/ab/article/view/164

Issue

Section

Articles