Dynamics of Phylogenetic Diversity and its influence on the production of Extracellular Protease by moderately Halotolerant Alkaliphilic Bacteria Acinetobacter baumannii GTCR407 Nov.
Keywords:
Haloalkaliphilic, Extracellular protease, Phylogenetic diversity, Microbial population dynamics, Acinetobacter baumanniiAbstract
New characters emerge in the population of microorganisms living in the extreme environments due to its adaptation to ecological association. The microorganisms living in saline habitat utilize complex nutrients by adopting different strategies in Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA), which are related to their metabolic and ecological diversities. Isolation and characterization of the organisms producing extracellular protease from such environment were the prime focus of this investigation, which can indicate the importance of metabolic diversity in phylogeny. Norberg medium was used to isolate halotolerant microorganisms from salt-cured skin. The isolates were screened for high activity of protease and the strain showing maximum activity of protease was taken for further studies. The biochemical characterization and 16s ribosomal RNA sequencing studies confirm that the isolate is Acinetobacter baumannii. Moreover, hydrolysis positive for starch and casein, negative for gelatin shows that the organism is a variant form of A. baumannii. Cell growth parameters such as pH and temperature were optimized and their values are 8 and 37oC respectively. The extracellular production of protease was optimized in the suitable medium and its enzyme activity was 165μg/ml/min. The results imply that the isolate had acquired operational genes through lateral gene transfer (LGT) probably from unrelated species in the environment. This indicates that the isolate identified possesses metabolic and ecological diversities with values of phylogenetic delineation.
Downloads
References
Towner, K. (2006). The Genus Acinetobacter. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H. & Stackebrandt, E. (eds), The Prokaryotes. Vol. 6, Springer, NY. pp. 746-758. https://doi.org/10.1007/0-387-30746-X_25.
Schreckenberger, P.C., Daneshvar, M.I., Weyant, R.S. & Hollis, D.G. (2003). Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods. In: Murray, P.R., Baron, E.J., Jorgensen, J.H., Pfaller, M.A. & Yolken, R.H. (ed.), Manual of clinical microbiology, 8th ed., ASM Press, Washington, D.C. pp. 749-779.
Bergogne-Bérézin, E. & Towner, K.J. (1996). Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev., 9(2): 148–165. https://doi.org/10.1128/CMR.9.2.148.
Gerner-Smidt, P. & Tjernberg, I. (1993). Acinetobacter in Denmark: II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Acta Pathologica, Microbiologica, Et Immunologica Scandinavica, 101(11): 826–832. https://doi.org/10.1111/j.1699-0463.1993.tb00187.x.
Houang, E.T., Chu, Y.W., Chu, K.Y., Ng, K.C., Leung, C.M. & Cheng, A.F. (2003). Significance of genomic DNA group delineation in comparative studies of antimicrobial susceptibility of Acinetobacter spp. Antimicrob. Agents Chemother., 47(4): 1472–1475. https://doi.org/10.1128/AAC.47.4.1472-1475.2003.
Spence, R.P., Towner, K.J., Henwood, C.J., James, D., Woodford, N. & Livermore, D.M. (2002). Population structure and antibiotic resistance of Acinetobacter DNA group 2 and 13TU isolates from hospitals in the UK. J. Med. Microbiol., 51(12): 1107–1112. https://doi.org/10.1099/0022-1317-51-12-1107.
Nemec, A., Dijkshoorn, L. & Jezek, P. (2000). Recognition of two novel phenons of the genus Acinetobacter among non-glucose-acidifying isolates from human specimens. J. Clin. Microbiol., 38(11): 3937–3941. https://doi.org/10.1128/JCM.38.11.3937-3941.2000.
Juni, E. (1984). Genus III. Acinetobacter Brisou et Prévot 1954. In: Krieg, N.R. & Holt, J.G. (ed.), Bergey’s manual of systematic bacteriology, vol. 1, Williams and Wilkins, Baltimore. pp. 303–307.
Rossau, R., Van Landschoot, A., Gillis, M. & De Ley, J. (1991). Taxonomy of Moraxellaceae fam. nov., a New Bacterial Family To Accommodate the Genera Moraxella, Acinetobacter, and Psychrobacter and Related Organisms. Int. J. Syst. Evol. Microbiol., 41(2): 310–319. https://doi.org/10.1099/00207713-41-2-310.
Rossau, R., Vandenbussche, G., Thielemans, S., Segers, P., Grosch, H., Göthe, E., Mannheim, W. & De Ley, J. (1989). Ribosomal Ribonucleic Acid Cistron Similarities and Deoxyribonucleic Acid Homologies of Neisseria, Kingella, Eikenella, Simonsiella, Alysiella, and Centers for Disease Control Groups EF-4 and M-5 in the Emended Family Neisseriaceae. Int. J. Syst. Evol. Microbiol., 39(2): 185–198. https://doi.org/10.1099/00207713-39-2-185.
Van Landschoot, A., Rossau, R. & De Ley, J. (1986). Intra- and Intergeneric Similarities of the Ribosomal Ribonucleic Acid Cistrons of Acinetobacter. Int. J. Syst. Evol. Microbiol., 36(2): 150–160. https://doi.org/10.1099/00207713-36-2-150.
Johnson, J.L., Anderson, R.S. & Ordal, E.J. (1970). Nucleic acid homologies among oxidase-negative Moraxella species. J. Bacteriol., 101(2): 568–573. https://doi.org/10.1128/jb.101.2.568-573.1970.
Baumann, P., Doudoroff, M. & Stanier, R.Y. (1968). A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol., 95(5): 1520–1541. https://doi.org/10.1128/jb.95.5.1520-1541.1968.
Allers, T. & Mevarech, M. (2005). Archaeal genetics - the third way. Nat. Rev. Genet., 6(1): 58–73. https://doi.org/10.1038/nrg1504.
Norberg, P. & von Hofsten, B. (1969). Proteolytic enzymes from extremely halophilic bacteria. J. Gen. Microbiol., 55(2): 251–256. https://doi.org/10.1099/00221287-55-2-251.
Wikström, M., Elwing, H. & Linde, A. (1981). Determination of proteolytic activity: a sensitive and simple assay utilizing substrate adsorbed to a plastic surface and radial diffusion in gel. Anal. Biochem., 118(2): 240–246. https://doi.org/10.1016/0003-2697(81)90185-8.
Hagihara, B. (1958). The Enzymes. Vol. 4, Academic Press Inc., New York, USA.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1): 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6.
Atlas, R.M. (2005). Handbook of media for environmental microbiology. 2nd edition. CRC Press, Boca Raton. pp. 672. https://doi.org/10.1201/9781420037487.
Nicholson, C.A. & Fathepure, B.Z. (2004). Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl. Environ. Microbiol., 70(2): 1222–1225. https://doi.org/10.1128/AEM.70.2.1222-1225.2004.
Zhang, W., Xue, Y., Ma, Y., Zhou, P., Ventosa, A. & Grant, W.D. (2002). Salinicoccus alkaliphilus sp. nov., a novel alkaliphile and moderate halophile from Baer Soda Lake in Inner Mongolia Autonomous Region, China. Int. J. Syst. Evol. Microbiol., 52: 789–793. https://doi.org/10.1099/00207713-52-3-789.
Studdert, C.A., Herrera Seitz, M.K., Plasencia Gil, M.I., Sanchez, J.J. & de Castro, R.E. (2001). Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J. Basic Microbiol., 41(6): 375–383. https://doi.org/10.1002/1521-4028(200112)41:6<375::AID-JOBM375>3.0.CO;2-0.
Kushner, D.J. (1993). Growth and nutrition of halophilic bacteria. In: Vreeland R.H. & Hochstein L.I. (Eds.), The biology of halophilic bacteria. CRC Press, Boca Raton. pp. 87-103.
Uchiyama, T., Abe, T., Ikemura, T. & Watanabe, K. (2005). Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat. Biotechnol., 23(1): 88–93. https://doi.org/10.1038/nbt1048.
Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev., 68(4): 669–685. https://doi.org/10.1128/MMBR.68.4.669-685.2004.
Quesada, E., Ventosa, A., Rodriguez-Valera, F., Megias, L. & Ramos-Cormenzana, A. (1983). Numerical Taxonomy of Moderately Halophilic Gram-negative Bacteria from Hypersaline Soils. Microbiology, 129(8): 2649–2657. https://doi.org/10.1099/00221287-129-8-2649.
Oren, A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol., 28(1): 56–63. https://doi.org/10.1038/sj/jim/7000176.
Liò, P. (2002). Investigating the Relationship Between Genome Structure, Composition, and Ecology in Prokaryotes. Mol. Biol. Evol., 19(6): 789–800. https://doi.org/10.1093/oxfordjournals.molbev.a004136.
Ochman, H., Lawrence, J.G. & Groisman, E.A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature, 405: 299–304. https://doi.org/10.1038/35012500.
Karlin, S., Campbell, A.M. & Mrázek, J. (1998). Comparative DNA analysis across diverse genomes. Annu. Rev. Genet., 32: 185–225. https://doi.org/10.1146/annurev.genet.32.1.185.
Jain, R., Rivera, M.C. & Lake, J.A. (1999). Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA, 96(7): 3801–3806. https://doi.org/10.1073/pnas.96.7.3801.
Rosenshine, I., Tchelet, R. & Mevarech, M. (1989). The mechanism of DNA transfer in the mating system of an archaebacterium. Science, 245(4924): 1387–1389. https://doi.org/10.1126/science.2818746.
Cryz, S.J. & Iglewski, B.H. (1980). Production of alkaline protease by Pseudomonas aeruginosa. J. Clin. Microbiol., 12(1): 131–133. https://doi.org/10.1128/jcm.12.1.131-133.1980.
Morihara, K. (1964). Production of Elastase and Proteinase by Pseudomonas aeruginosa. J. Bacteriol., 88(3): 745–757. https://doi.org/10.1128/jb.88.3.745-757.1964.
Gavigan, J.A., Marshall, L.M. & Dobson, A.D. (1999). Regulation of polyphosphate kinase gene expression in Acinetobacter baumannii 252. Microbiology, 145: 2931–2937. https://doi.org/10.1099/00221287-145-10-2931.
Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev., 63(4): 735–750. https://doi.org/10.1128/MMBR.63.4.735-750.1999.
Prakasham, R.S., Rao, C.S. & Sarma, P.N. (2006). Green gram husk—an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol., 97(13): 1449–1454. https://doi.org/10.1016/j.biortech.2005.07.015.
Krulwich, T.A., Ito, M., Hicks, D.B., Gilmour, R. & Guffanti, A.A. (1998). pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Extremophiles, 2(3): 217–222. https://doi.org/10.1007/s007920050063.
Ray, M.K., Devi, K.U., Kumar, G.S. & Shivaji, S. (1992). Extracellular protease from the antarctic yeast Candida humicola. Appl. Environ. Microbiol., 58(6): 1918–1923. https://doi.org/10.1128/aem.58.6.1918-1923.1992.
Vortuba, J., Pazlarova, J., Dvorakova, M., Vachova, L., Strnadova, M., Kucerova, H., Vinter, V., Zourabian, R. & Chaloupka, J. (1991). External factors involved in the regulation of synthesis of an extracellular proteinase in Bacillus megaterium: effect of temperature. Appl. Microbiol. Biotechnol., 35(3): 352–357. https://doi.org/10.1007/BF00172725.
Frankena, J., Koningstein, G.M., van Verseveld, H.W. & Stouthamer, A.H. (1986). Effect of different limitations in chemostat cultures on growth and production of exocellular protease by Bacillus licheniformis. Appl. Microbiol. Biotechnol., 24(2): 106–112. https://doi.org/10.1007/BF00938779.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2010 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.