Adsorption of Dyes from Aqueous Solution Using Orange Peels: Kinetics and Equilibrium
Keywords:
Disperse Dye, MTR Dye, pH, Langmuir model, Freundlich modelAbstract
The adsorption of dyes from aqueous solution has been investigated on Orange Peels (OP). The influence of pH, contact time, adsorbent dosage, dye concentration, agitation speed, temperature and particle size of biosorbent on the biosorption has been investigated. The biosorptive capacities of the biosorbents were dependent on the pH of the dye solution, with pH 2 and 4 being optimal. From the analysis of isotherm data obtained from the fittings of the Freundlich model fits better than the Langmuir model in case of acid blue MTR dye and in case of red 3BLS disperse dye Langmuir model fits better than Freundlich model. The adsorption capacities were found to be 19.48, 36.67, 16.69mg/g for FOP, IOP, DOP in case of Acid Blue MTR Dye and similarly 23.35, 29.36, 27.30mg/g respectively in the case of Red 3BLS Disperse Dye.
Downloads
References
Banat, I.M., Nigam, P., Singh, D. & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: A review. Bioresour. Technol., 58(3): 217–227. https://doi.org/10.1016/S0960-8524(96)00113-7.
Selvam, K., Swaminathan, K. & Chae, K.S. (2003). Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour. Technol., 88(2): 115–119. https://doi.org/10.1016/s0960-8524(02)00280-8.
Zollinger, H. (1991). Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments (2nd ed.), VCH Publishers, New York.
O’Mahony, T., Guibal, E. & Tobin, J.M. (2002). Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme Microb. Technol., 31(4): 456–463. https://doi.org/10.1016/S0141-0229(02)00110-2.
Garg, V.K., Gupta, R., Bala Yadav, A. & Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour. Technol., 89(2): 121–124. https://doi.org/10.1016/S0960-8524(03)00058-0.
Kapdan, I.K., Kargi, F., McMullan, G. & Marchant, R. (2000). Biological Decolorization of Textile Dyestuff by Coriolus Versicolor in a Packed Column Reactor. Environ. Technol., 21(2): 231–236. https://doi.org/10.1080/09593330.2000.9618905.
Porter, J.F., McKay, G. & Choy, K.H. (1999). The prediction of sorption from a binary mixture of acidic dyes using single- and mixed-isotherm variants of the ideal adsorbed solute theory. Chem. Eng. Sci., 54(24): 5863–5885. https://doi.org/10.1016/S0009-2509(99)00178-5.
Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc., 40(9): 1361–1403. https://doi.org/10.1021/ja02242a004.
Freundlich, H. (1926). Colloid and Capillary Chemistry. Methuen and Co. Ltd; London, pp. 883.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.