Effect of Fusarium sp. On Paddy Straw Digestibility and Biogas Production
Keywords:
Biodegradation, Biogas production, Lignin, Paddy straw, Fusarium sp., SilicaAbstract
Chopped and moist paddy straw was pretreated with Fusarium sp. to enhance its digestibility and biogas production. The potential of microbial pretreatment of paddy straw was investigated at regular interval of 5, 10, 15 and 20 days by determining the change in Chemical composition of paddy straw like cellulose, hemicellulose, lignin and silica contents. The pretreated straw was used for biogas production in 2l capacity biogas digesters. Results indicate that the cellulose, hemicellulose, lignin and silica contents decreased by 17.2%, 3.4%, 27.1% & 16.5% respectively. Biogas production also increased by 53.8% in 10 days pretreated samples. The significantly higher reduction of silica along with lignin content in the pretreated straw indicates that removal of silica by Fusarium sp. might be more responsible for increasing paddy straw digestibility and biogas production.
Downloads
References
Anonymous (2010). Ministry of Agriculture, Ministry of External Affairs, Government of India. (http://www.indiabusiness.nic.in/economy/agriculture.html) 1/5/2010.
AOAC (2000). Official methods of analysis of AOAC International. 17th Edition. Gaithersburg, MD, USA Association of Analytical Communities.
Bisaria, V.S. & Ghose, T.K. (1981). Biodegradation of cellulosic materials: Substrates, microorganisms, enzymes and products. Enzyme Microb. Technol., 3(2): 90-104. https://doi.org/10.1016/0141-0229(81)90066-1.
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem., 28(3): 350–356. https://doi.org/10.1021/ac60111a017.
Ehrlich, H. L. (2006). Geomicrobiology: relative roles of bacteria and fungi as geomicrobial agents. In: Gadd, G.M. (ed), Fungi in Biogeochemical Cycles. Cambridge University Press. pp 1-27. https://doi.org/10.1017/CBO9780511550522.002.
Jafari, M.A., Nikkhah, A., Sadeghi, A.A. & Chamani, M. (2007). The effect of Pleurotus spp. on chemical composition and in vitro digestibility of rice straw. Pak. J. Biol. Sci., 10(15): 2460-64.
Jalc, D., Nerud, F. & Siroka, P. (1998). The effectiveness of biological treatment of wheat straw by white-rot fungi. Folia Microbiol., 43(6): 687-89.
Jenkins, B.M. & Bhatnagar, A.P. (1991). On the electric power potential from paddy straw in the Punjab and the optimal size of the power generation station. Bioresour. Technol., 37(1): 35–41. https://doi.org/10.1016/0960-8524(91)90109-W.
Kashyap, D.R., Dadhich, K.S. & Sharma, S.K. (2003). Biomethanation under psychrophilic conditions: a review. Bioresour. Technol., 87(2): 147–153. https://doi.org/10.1016/S0960-8524(02)00205-5.
Keller, F.A., Hamilton, J.E. & Nguyen, Q.A. (2003). Microbial pretreatment of biomass. Appl. Biochem. Biotechnol., 105(1): 27–41. https://doi.org/10.1385/ABAB:105:1-3:27.
Kirk, T.K. (1973). The chemistry and biochemistry of decay. In: D.D. Nicholas (Ed.), Wood deterioration and its prevention by preservative treatments. Syracuse University Press. Syracuse, N.Y. pp. 149-181.
Maiorella, B.L. (1985). Ethanol. In: Moo-Young, M. (ed.), Comprehensive biotechnology. Vol. 3. Pergamon Press, Oxford. pp. 861–914.
Mandhulika, Singh, D.P. and Malik, R.K. (1993). Isolation of a few lignocelluloses degrading fungi. Ind. J. Microbiol., 33: 265-67.
Mehta, V., Gupta, J.K. & Kaushal, S.C. (1990). Cultivation of Pleurotus florida mushroom on rice straw and biogas production from the spent straw. World J. Microbiol. Biotechnol., 6(4): 366–370. https://doi.org/10.1007/BF01202116.
Okano, K., Kitagawa, M., Sasaki, Y. & Watanabe, T. (2005). Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Anim. Feed Sci. Technol., 120(3): 235–243. https://doi.org/10.1016/j.anifeedsci.2005.02.023.
Pauss, A., Naveau, H. & Nyns, E.J. (1987). Biogas production. In: Hall, D.O. & Overend, R.P. (eds). Biomass: regenerable energy. Wiley-Interscience Publications, New York. pp 273–291.
Saratale, G.D., Chen, S.D., Lo, Y.C., Saratale, R.G. & Chang, J.S. (2008). Outlook of biohydrogen production from lingocellulosic feedstock using dark fermentation-a review. J. Sci. Ind. Res., 67: 962-79.
Schurz, J. (1978). Bioconversion of cellulosic substances into energy. In: Ghose, T.K. (Ed.), Chemicals and Microbial Protein Symposium Proceedings. IIT, New Delhi, pp. 37.
Shi, J., Sharma-Shivappa, R.R., Chinn, M. & Howell, N. (2009). Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy, 33(1): 88–96. https://doi.org/10.1016/j.biombioe.2008.04.016.
Sinegani, A., Emtiazi, G., Hajrasuliha, S. & Shariatmadari, H. (2005). Biodegradation of some agricultural residues by fungi in agitated submerged cultures. Afr. J. Biotechnol., 4(10): 1058-61. https://doi.org/10.4314/ajb.v4i10.71367.
Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K. & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J. Biosci. Bioeng., 100(6): 637–643. https://doi.org/10.1263/jbb.100.637.
Wang, J. & Christopher, S.A. (2003). Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett., 30(21): 2095-98. https://doi.org/10.1029/2003GL018174.
Zafar, S.I., Kausar, T. & Shah, F.H. (1981). Biodegradation of the cellulose component of rice straw byPleurotus sajor-caju. Folia Microbiol., 26(5): 394–397. https://doi.org/10.1007/BF02927333.
Zhang, R., Li, X. & Fadel, J.G. (2002). Oyster mushroom cultivation with rice and wheat straw. Bioresour. Technol., 82(3): 277–284. https://doi.org/10.1016/S0960-8524(01)00188-2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.