Study the Response of Cucumber Plant to Different Magnetic Fields

Authors

  • A. Rezaiiasl Institute of Agriculture Machinery, University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
  • A. Ghasemnezhad Institute of Horticultural Sciences, University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
  • S. Shahabi Institute of Agriculture Machinery, University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

Keywords:

Magnetic field, Cucumber, Direct magnetic current, Alternative magnetic current

Abstract

Magnetic fields (MF) are widely distributed in the environment and their effects are increasing due to various instruments that are used in industry and medicine. In the present experiment, the growth and productivity of cucumber plants of seeds in which affected by different magnetic fields was investigated. The soaked seed samples of cucumber were exposed to a 20μT AC magnetic field for 30 minutes. Similar seed samples also were treated with DC magnetic fields of 5μT for 30 min. To compare the effect of different magnetic fields, control samples with three replications were placed in gape out of magnetic field for 30 min. Results of study showed that the germination of seeds was significantly influenced by different magnetic fields depending on the days after treatment application. The first germinated seeds were observed two days after beginning of test in DC magnetic field (0.7 seed) treatment. In the last days of experiments (day ninth), no difference was observed among treatments. The growth behavior of seedling of cucumber affected by different magnetic field in comparison with control plants in greenhouse showed that seeds in which treated with AC magnetic field have better growth rate. The results of evaluation of plants in the field showed that parameters like fruit length (FL), the diameter of fruit (FMD), Fruit weight (FW), number of side stem (NSS), flower number (NF) and the number of flower per main stem were not significantly different at different times of experiment. Contrary to that, parameters such as the number of fruits per plant (NF) and the length of main stem (LMS) were significantly increased by time. Based on the obtained results of the germination, greenhouse and field trials it can be concluded that direct magnetic field stimulates seed germination and increases the growth rate and vigor of seedling especially at the beginning of germination. Generally, it can be indicated that the initial effect of magnetic field on the germination rate and the growth of seedling is very positive since it induces an improved capacity for nutrient and water uptake, providing greater physical support to the developing shoot.

Downloads

Download data is not yet available.

References

Alexander, M.P. & Doijode, S.D. (1995). Electromagnetic field, a novel tool to increase germination and seedling vigor of conserved onion (Allium cepa L.) and rice (Oryza sativa L.) seeds with low viability. Plant Genet. Resour. Newsl., 104: 1-5.

Aksyonov, S.I., Bulychev, A.A., Grunina, T.Yu., Goryachev, S.N. & Turovetsky, V.B. (2001). Effects of ELF-EMF Treatment on Wheat Seeds at Different Stages of Germination and Possible Mechanisms of their Origin. Electro- Magnetobiol., 20(2): 231–253. https://doi.org/10.1081/JBC-100104146.

Amaya, J.M., Carbonell, M.V., Martínez, E. & Raya, A. (1996). Effect of stationary magnetic field on growth and germination of seeds (in Spanish). Agricultura, 773: 1049-1064.

Carbonell, M.V., Martinez, E. & Amaya, J.M. (2000). Stimulation of Germination in Rice (Oryza Sativa L.) By a Static Magnetic Field. Electro- Magnetobiol., 19(1): 121–128. https://doi.org/10.1081/JBC-100100303.

De Souza, A., Casate, R. & Porras, E. (1999). Effect of magnetic treatment of tomato seeds (Lycopersicon esculentum Mill.) on germination and seedling growth [in Spanish]. Invest. Agr. Prod. Prot. Veg., 14(3): 437-444.

Flórez, M., Carbonell, M.V. & Martínez, E. (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environ. Exp. Bot., 59(1): 68–75. https://doi.org/10.1016/j.envexpbot.2005.10.006.

Ghanati, F., Abdolmaleki, P., Vaezzadeh, M., Rajabbeigi, E. & Yazdani, M. (2007). Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. Environmentalist, 27(4): 429–434. https://doi.org/10.1007/s10669-007-9079-7.

Gutzeit, H.O. (2001). Biological Effects of ELF-EMF Enhanced Stress Response: New Insights and New Questions. Electro- Magnetobiol., 20(1): 15-26. https://doi.org/10.1081/JBC-100103157.

Martinez, E., Carbonell, M.V. & Amaya, J.M. (2000). A Static Magnetic Field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro- Magnetobiol., 19(3): 271–277. https://doi.org/10.1081/JBC-100102118.

Repacholi, M.H. & Greenebaum, B. (1999). Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics, 20(3): 133-160. https://doi.org/10.1002/(SICI)1521-186X(1999)20:3<133::AID-BEM1>3.0.CO;2-O.

Rãcuciu, M., Creangã, D. & Horga, I. (2006). Plant growth under static magnetic field influence. National Conference on Applied Physics, June 9–10, Galati, Romania.

Pietruszewski, S.T. (1993). Effect of magnetic seed treatment on yields of wheat. Seed Sci. Technol., 21(3): 621-626.

Phirke, P.S. & Umbarkar, S.P. (1998). Influence of magnetic treatment of oil seed on yield and dry matter. PKV Res. J., 22: 130–132.

Socorro, A., Gil, M., Labrada, A., Díaz, C. & Lago, E. (1999). Cell model of seed tissue treated with magnetic field. II International Symposium on Applied Nuclear and Related Techniques in Agricultura, Industry and Environment, La Habana, Cuba, 26-29 October.

Weaver, J.C. (1993). Combined environmental exposures to chemicals and transient magnetic fields: A hypothesis for possible human health hazards. Proceedings of the Bioelectromagnetics Society, BEMS 16th Annual Meeting, 12–16 June, Copenhagen, Denmark. p. 36.

Wittekindt, E., Broers, D., Kraepelin, G. & Lamprecht, I. (1990). Influence of non-thermic AC magnetic fields on spore germination in a dimorphic fungus. Radiat. Environ. Biophys., 29(2): 143–152. https://doi.org/10.1007/BF01210559.

Zhang, Q.M., Tokiwa, M., Doi, T., Nakahara, T., Chang, P.W., Nakamura, N., Hori, M., Miyakoshi, J. & Yonei, S. (2003). Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR. Int. J. Radiat. Biol., 79(4): 281–286. https://doi.org/10.1080/0955300031000096289.

Downloads

Abstract views: 38 / PDF downloads: 20

Published

2012-01-01

How to Cite

Rezaiiasl, A., Ghasemnezhad, A., & Shahabi, S. (2012). Study the Response of Cucumber Plant to Different Magnetic Fields. Advances in BioScience, 3(1), 42–46. Retrieved from https://journals.sospublication.co.in/ab/article/view/59

Issue

Section

Articles