The Effect of Using Vitavax Fungicide on Microbial Flora of Peas and Barley Roots and Some Vegetative Characteristics


  • Salem A. Mahfouz Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Egypt.
  • Abdel Kader Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Egypt.
  • S. El-Zen Botany Department, Faculty of Science, Sebha, Libyan Jamahiriya, Libya.


Vitavax, Rhizosphere, Rhizoplan, Growth parameters of peas and barley, Dominant and resistant isolates


The fungicide Vitavax was used to fumigate both barley and pea seeds at concentrations; 0.1, 0.3 and 0.5mg/g seeds and kept for a period reaching five months. The data obtained indicate that germination percentage and the plant growth characteristics were slightly affected with differences in the two plants under investigation. With regard to microbial content in both rhizosphere and rhizoplan; the total viable count was slightly affected after one month of storage, but the counts remained at a good rate till the 5th month of storage. The dominant strains belonged to Bacillus, Pseudomonas, Micrococcus, Sarcina and Actinomyces. The counts of Azotobacter were not affected in a high degree. The fungicide concentration of 0.3mg/g was the best among the treatments with 3 months storage period, for either plant growth parameters or bacterial counts although it reached five months with other treatments.


Download data is not yet available.


Abdel-Aziz, M. (2006). Side effects of some fungicides on non-symbiotic nitrogen-fixing bacteria. In: 9th Arab Congress of Plant Protection, 19-23 Nov. 2006, Damascus, Syria.

Anderson, J.R. (1978). Pesticide effects on non-target soil microorganisms. In: Hill, I.R. & Brite, S.J.L. (Eds.), Pesticide Microbiology, Academic Press, London. pp. 313-533.

Bending, G.D., Rodríguez-Cruz, M.S. & Lincoln, S.D. (2007). Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere, 69(1): 82–88.

Bossio, D.A., Scow, K.M., Gunapala, N. & Graham, K.J. (1998). Determinants of Soil Microbial Communities: Effects of Agricultural Management, Season, and Soil Type on Phospholipid Fatty Acid Profiles. Microb. Ecol., 36(1): 1–12.

Busse, M.D., Ratcliff, A.W., Shestak, C.J. & Powers, R.F. (2001). Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol. Biochem., 33(12): 1777–1789.

Digrak, M. & Özçelik, S. (1998). Effect of Some Pesticides on Soil Microorganisms. Bull. Environ. Contam. Toxicol., 60(6): 916–922.

Durska, G. (2003). The Effect of Funaben T Seed Dressing on the Occurrence of Bacteria in Soil under Peas. Pol. J. Environ. Stud., 12(6): 693-699.

Finkelstein, Z.I. & Golovleva, L.A. (1988). Effect of Regular Application of Pesticides on Nitrogen Bacteria. Zentralbl. Mikrobiol., 143(6): 453–456.

Goldstein, R.M., Mallory, L.M. & Alexander, M. (1985). Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ. Microbiol., 50(4): 977–983.

Gomez, K.A. & Gomez, A.A. (1984). Statistical procedures for Agriculture Research. 2nd (ed.), John Wiley & Sons, Inc. New York, USA. pp. 704 .

Hata, S., Shirata, K. & Takagishi, H. (1986). Degradation of paraquat and diquat by the yeast Lipomyces starkeyi. J. Gen. Appl. Microbiol., 32(3): 193–202.

Hegazi, N.A., Amer, H.A. & Monib, M. (1980). Studies on N2-fixing spirilla (Azospirillum spp.) in Egyptian soils. Revue d'Ecologie et de Biologie du Sol, 17(4): 491-499.

Holt, J.G., Krieg, N.R., Sneath, P.H.A., Stanley, J.T. & Williams, S.T. (1994). Bergey’s Manual of Determinative Bacteriology. 9th Ed., The Williams and Wilkins Co., Baltimore.

Jensen, J.L. (1888). The propagation and prevention of smut in oats and barley. J. Royal Agric. Soc. England, 24: 397-415

Johnsen, K., Jacobsen, C.S., Torsvik, V. & Sørensen, J. (2001). Pesticide effects on bacterial diversity in agricultural soils – a review. Biol. Fertil. Soils, 33(6): 443–453.

Karanth, N.G.K. & Vasantharajan, V.N. (1973). Persistence and effect of dexon on soil respiration. Soil Biol. Biochem., 5(5): 679–684.

Kinney, C.A., Mandernack, K.W. & Mosier, A.R. (2005). Laboratory investigations into the effects of the pesticides mancozeb, chlorothalonil, and prosulfuron on nitrous oxide and nitric oxide production in fertilized soil. Soil Biol. Biochem., 37(5): 837–850.

Liess, M. (2004). Enhancing realism and practicability in ecotoxicological risk assessment. Proceedings of Interact 2004, Gold Coast, Australia, 123.

Maher, S.M., Sahi, S.T., Ghazanfar, M.U., Inam-Ul-Haq, M., Imran-Ul-Haq, Iftikhar, Y., Sarwar, M.S. & Ahmad, T. (2005). Evaluation of different toxicants against Xanthomonas campestris pv. citri. (Hasse) Dows. Int. J. Agric. Biol., 7(1): 121-124.

Martı́nez-Toledo, M.V., Salmerón, V., Rodelas, B., Pozo, C. & González-López, J. (1998). Effects of the fungicide Captan on some functional groups of soil microflora. Appl. Soil Ecol., 7(3): 245–255.

Peichl, L. & Reiml, D. (1990). Biological effect-test systems for the early recognition of unexpected environmental changes. Environ. Monit. Assess., 15(1): 1–12.

Pimentel D. & Greiner, A. (1997). Environmental and socio-economic costs of pesticide use. In: Pimentel, D. (Ed.), Techniques for Reducing Pesticide Use: Economic and Environmental Benefits, John Wiley & Sons, Chichester, UK. pp. 51-78.

Ramadan, M.A., El-Tayeb, O.M. & Alexander, M. (1990). Inoculum size as a factor limiting success of inoculation for biodegradation. Appl. Environ. Microbiol., 56(5): 1392–1396.

Saeidi, G. & Mirik, A.A.M. (2006). Fungicide Seed Treatment and Seed Colour Effects on Seed Vigour and Emergence in Flax. Int. J. Agric. Biol., 8(6): 732-735.

Sahin, N. & Tamer, A.U. (2000). Isolation, characterization and identification of Thiram-degrading microorganisms from soil enrichment cultures. Turk. J. Biol., 24(2): 353–363.

Salle, A.J. (1973). Laboratory manual on fundamental principles of bacteriology. 7th Ed., McGraw-Hill Book Co., New York. p. 201.

Sigler, W.V. & Turco, R.F. (2002). The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl. Soil Ecol., 21(2): 107–118.

Smith, M.D., Hartnett, D.C. & Rice, C.W. (2000). Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biol. Biochem., 32(7): 935–946.

Stefaniak, O., Ślizak, W. & Piotrowski, W. (1993a). Influence of seed dressing on rhizosphere microflora of legumes I. biotic relations. Zentralbl. Mikrobiol., 148(5): 357–364.

Stefaniak, O., Ślizak, W. & Piotrowski, W. (1993b). Influence of seed dressing on rhizosphere microflora of legumes II. response of some physiological groups. Zentralbl. Mikrobiol., 148(5): 365–373.

Topp, E., Zhu, H., Nour, S.M., Houot, S., Lewis, M. & Cuppels, D. (2000). Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Appl. Environ. Microbiol., 66(7): 2773–2782.

Tu, C.M. (1993). Effect of fungicides, captafol and chlorothalonil, on microbial and enzymatic activities in mineral soil. J. Environ. Sci. Health B, 28(1): 67–80.

Wootton, M.A., Kremer, R.J. & Keaster, A.J. (1993). Effects of carbofuran and the corn rhizosphere on growth of soil microorganisms. Bull. Environ. Contam. Toxicol., 50(1): 49–56.


Abstract views: 23 / PDF downloads: 13



How to Cite

Mahfouz, S. A., Kader, A., & El-Zen, S. (2011). The Effect of Using Vitavax Fungicide on Microbial Flora of Peas and Barley Roots and Some Vegetative Characteristics. Advances in BioScience, 2(2), 23–29. Retrieved from