Temperature – Dependent Toxicokinetics of Copper and Lead in Notonecta glauca L. (Hemiptera: Notonectidae) Under Laboratory Condition


  • Abhijit Dutta University Department of Zoology, Ranchi University, Ranchi-834008, India.
  • Sunita Dutta Department of Zoology, Women’s College, Ranchi-834001, India.
  • Sweety Kumari University Department of Zoology, Ranchi University, Ranchi-834008, India.


Temperature, Uptake factor, Bioaccumulation, Toxicokinetics


Temperature is a critical factor due to its effect on both physiology of the organism and the environmental chemistry of the metals. The present study focuses on the toxicity and the bioaccumulation kinetics of Cu and Pb in Notonecta glauca exposed to heavy metal contaminated water system at different temperatures. The result showed that the accumulation of heavy metal gradually increases with increase in temperature and duration of exposure while there was a decrease in LC50 value of Pb and Cu. The calculated uptake factor of lead at different temperatures showed that it has a higher uptake potential than copper.


Download data is not yet available.


Fernandes, M.N. & Mazon, A.F. (2003). Environmental pollution and fish gill morphology. In: Val, A.L. & Kapoor, B.G. (eds.), Fish adaptations. Science Publishers, Enfield, pp. 203–231.

Lagadic, L. & Caquet, T. (1998). Invertebrates in testing of environmental chemicals: are they alternatives? Environ. Health Perspect., 106: 593–611. https://doi.org/10.1289/ehp.98106593.

Michailova, P.V. (2011). Rearrangements in chironomidae (Diptera) genomes induced by various environmental stress factors. Russ. J. Genet. Appl. Res., 1(1): 10–20. https://doi.org/10.1134/S2079059711010035.

Sudha, P.N. & Backiyavathy, D.M. (2006). Comparison of toxicokinetics based bioaccumulation of copper and cadmium by earthworm Lampito mauritii (Kinberg) under controlled laboratory conditions. The Bioscan, 1: 27-30.

Morgan, A.J., Morgan, J.E., Turner, M., Winters, C. & Yarwood, A. (1993). Heavy metal relationships of earthworms. In: Dallinger, R. & Rainbow, P.S. (Eds.), Ecotoxicology of Metals in Invertebrates, Lewis Publishers, Boca Raton, FL, pp. 333-358.

Peijnenburg, W.J.G.M., Posthuma, L., Eijsackers, H. & Allen, H.E. (1997). Implementation of bioavailability for policy and environmental management purposes. In: Herrchen, M., Debus, R. & Pramanik-Strehlow, R. (Eds.), Bioavailability as a Key Property in Terrestrial Ecotoxicity Assessment and Evaluation. Fraunhofer IRB Verlag, Stuttgart, Germany, pp. 35-54.

Widianarko, B. & VanStraalen, N. (1996). Toxicokinetics-based survival analysis in bioassays using nonpersistent chemicals. Environ. Toxicol. Chem., 15(3): 402–406. https://doi.org/10.1002/etc.5620150326.

Finey, D.J. (1971). Probit analysis. 3rd ed., Cambridge University Press, Cambridge, pp. 333.

APHA (1995). Standard methods for the examination of water and wastewater. 19th ed., American Public Health Association, Washington, DC.

Sample, B.E., Beauchamp, J.J., Efroymson, R.A., Suter II, G.W. & Ashwood, T.L. (1998). Development and Validation of Bioaccumulation Models for Earthworms. Report ES/ER/TM-220, U.S. Department of Energy / Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Landrum, P.F., Hayton, W.L., Lee, H., II, McCarty, L.S., Mackay, D. & McKim, J.M. (1994). Synopsis of Discussion Session on the Kinetics behind Environmental Bioavailability. In: Hamelink, J.L., Landrum, P.F., Bergman, H.L. & Benson W. (Eds.), Bioavailability: Physical, Chemical and Biological Interactions, CRC Press, Boca Raton, FL, pp. 203–219.

Hodson, P.V., Borgmann, U. & Shear, H. (1979). Toxicity of copper to aquatic biota. In: Nriagu, J.O. (ed.), Copper in the environment, part II: Health effects. John Wiley & Sons, New York, pp. 307–372.

Lewis, A.G. & Cave, W.R. (1982). The biological importance of copper in oceans and estuaries. Oceanogr. Mar. Biol. Ann. Rev., 20: 471-695.

Leland, H.V. & Kuwabara, J.S. (1985). Trace metals. In: Rand, G.M. & Petrocelli, S.R. (Eds.), Fundamentals of aquatic toxicology: Methods and application, Hemisphere Publishing Corporation, Washington, DC, pp. 374-415.

Bryant, V., McLusky, D.S., Roddie, K. & Newbery, D.M. (1984). Effect of temperature and salinity on the toxicity of chromium to three estuarine invertebrates (Corophium volutator, Macoma balthica, Nereis diversicolor). Mar. Ecol. Prog. Ser., 20: 137–149. https://doi.org/10.3354/meps020137.

Bryant, V., Newberry, D.M., McLusky, D.S. & Campbell, R. (1985). Effect of temperature and salinity on the toxicity of arsenic to three estuarine invertebrates (Corophium volutator, Macoma balthica, Tubifex costatus). Mar. Ecol. Prog. Ser., 24: 129–137. https://doi.org/10.3354/meps024129.

WHO (1989). Environmental Health Criteria No. 85: Lead-environmental aspects. WHO International Programme on Chemical Safety. World Health Organization, Geneva.

Jones, M.B. (1975). Synergistic effects of salinity, temperature and heavy metals on mortality and osmoregulation in marine and estuarine isopods (Crustacea). Mar. Biol., 30(1): 13–20. https://doi.org/10.1007/BF00393748.

Spehar, R.L., Anderson, R.L. & Fiandt, J.T. (1978). Toxicity and bioaccumulation of cadmium and lead in aquatic invertebrates. Environ. Pollut., 15(3): 195–208. https://doi.org/10.1016/0013-9327(78)90065-4.

Bat, L., Akbulut, M., Çulha, M., Gündoğdu, A. & Satilmiş, H.H. (2000). Effect of Temperature on the Toxicity of Zinc, Copper and Lead to the Freshwater Amphipod Gammarus pulex pulex (L., 1758). Turk. J. Zool., 24(4): 409–415.

Nussey, G. (1998). Metal ecotoxicology of the Upper Olifants River at selected localities and the effect of copper and zinc on fish blood physiology. Ph.D. thesis, Rand Afrikaans University, South Africa.

Blust, R., Bernaerts, F., Van der Linden, A. & Thoeye, C. (1987). The influence of aqueous copper chemistry on the uptake and toxicity of copper in Artemia. In: Sorgeloos, P., Bengtson, D.A., Decleir, W. & Jaspers, E. (Ed.), Artemia research and its applications: 1. Morphology, genetics, strain characterization, toxicology. Proceedings of the Second International Symposium on the brine shrimp Artemia. Universa Press: Wetteren. pp. 311-323.

Solioz, M. & Vulpe, C. (1996). CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci., 21(7): 237–241. https://doi.org/10.1016/S0968-0004(96)20016-7.

Rogers, J.T., Patel, M., Gilmour, K.M. & Wood, C.M. (2005). Mechanisms behind Pb-induced disruption of Na+ and Cl- balance in rainbow trout (Oncorhynchus mykiss). Am. J. Physiol. Regul. Integr. Comp. Physiol., 289(2): R463–R472. https://doi.org/10.1152/ajpregu.00362.2004.

Kosalwat, P. & Knight, A.W. (1987). Acute toxicity of aqueous and substrate-bound copper to the midge,Chironomus decorus. Arch. Environ. Contam. Toxicol., 16(3): 275–282. https://doi.org/10.1007/BF01054944.

Shutes, R.B.E., Ellis, J.B., Revitt, D.M. & Bascombe, A.D. (1991). The biological assessment of toxic metal impacts on receiving water quality, UK. In: Peters, N.E. & Walling, D.E. (Eds.), Sediment and Stream Water Quality in a Changing Environment: Trends and Explanation, Proceedings of the Vienna Symposium, August 1991, IAHS Publ. no. 203, IAHS Wallingford, pp. 277-284.


Abstract views: 21 / PDF downloads: 7



How to Cite

Dutta, A., Dutta, S., & Kumari, S. (2011). Temperature – Dependent Toxicokinetics of Copper and Lead in Notonecta glauca L. (Hemiptera: Notonectidae) Under Laboratory Condition. Advances in BioScience, 2(2), 35–39. Retrieved from https://journals.sospublication.co.in/ab/article/view/38