Electric Bacteria: A Review
Keywords:
Electric bacteria, Shewanella, Geobacter, Nanowires, Microbial fuel cell, BioremediationAbstract
Electromicrobiology is the field of prokaryotes that can interact with charged electrodes, and use them as electron donors/acceptors. This is done via a method known as extracellular electron transport. EET-capable bacterium can be used for different purposes, water reclamation, small power sources, electrosynthesis and pollution remedy. Research on EET-capable bacterium is in its early stages and most of the applications are in the developmental phase, but the scope for significant contributions is high and moving forward.
Downloads
References
Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M. & Lovley, D.R. (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol., 69(10): 5884–5891. https://doi.org/10.1128/aem.69.10.5884-5891.2003.
Badwal, S.P., Giddey, S.S., Munnings, C., Bhatt, A.I. & Hollenkamp, A.F. (2014). Emerging electrochemical energy conversion and storage technologies. Front. Chem., 2: 79. https://doi.org/10.3389/fchem.2014.00079.
Bennetto, H.P. (1990). Electricity Generation by Micro-organisms. Biotechnology Education, 1(4): 163–168.
Bergel, A., Féron, D. & Mollica, A. (2005). Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun., 7(9): 900–904. https://doi.org/10.1016/j.elecom.2005.06.006.
Brahic, C. (2014). The electricity eaters. New Sci., 223(2978): 8–9. https://doi.org/10.1016/S0262-4079(14)61375-0.
Cahoon, L.A. & Freitag, N.E. (2018). The electrifying energy of gut microbes. Nature, 562: 43–44. https://doi.org/10.1038/d41586-018-06180-z.
Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M. & Liu, H. (2019). Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb. Cell Fact., 18: 39. https://doi.org/10.1186/s12934-019-1087-z.
Cheng, K.Y., Ho, G. & Cord-Ruwisch, R. (2008). Affinity of Microbial Fuel Cell Biofilm for the Anodic Potential. Environ. Sci. Technol., 42(10): 3828–3834. https://doi.org/10.1021/es8003969.
Cologgi, D.L., Lampa-Pastirk, S., Speers, A.M., Kelly, S.D. & Reguera, G. (2011). Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl. Acad. Sci. U.S.A., 108(37): 15248–15252. https://doi.org/10.1073/pnas.1108616108.
Dikow, R.B. (2011). Genome-level homology and phylogeny of Shewanella (Gammaproteobacteria: lteromonadales: Shewanellaceae). BMC genomics, 12: 237. https://doi.org/10.1186/1471-2164-12-237.
Du, Z., Li, H. & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv., 25(5): 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004.
Ebrahimi, A., Najafpour, G.D. & Yousefi Kebria, D. (2018). Performance of microbial desalination cell for salt removal and energy generation using different catholyte solutions. Desalination, 432: 1–9. https://doi.org/10.1016/j.desal.2018.01.002.
El-Naggar, M.Y., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.M., Nealson, K.H. & Gorby, Y.A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. U.S.A., 107(42): 18127–18131. https://doi.org/10.1073/pnas.1004880107.
Franks, A.E. & Nevin, K.P. (2010). Microbial Fuel Cells, A Current Review. Energies, 3(5): 899–919. https://doi.org/10.3390/en3050899.
Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K.H. & Fredrickson, J.K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. U.S.A., 103(30): 11358–11363. https://doi.org/10.1073/pnas.0604517103.
Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., Eisen, J.A., et al., (2002). Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nat. Biotechnol., 20: 1118–1123. https://doi.org/10.1038/nbt749.
Jiang, S., Kim, M.G., Kim, S.J., Jung, H.S., Lee, S.W., Noh, D.Y., Sadowsky, M.J., & Hur, H. G. (2011). Bacterial formation of extracellular U(VI) nanowires. Chem. Commun. (Camb.), 47(28): 8076–8078. https://doi.org/10.1039/c1cc12554k.
Kim, I.S., Chae, K.-J., Choi, M.-J. & Verstraete, W. (2008). Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation. Environ. Eng. Res., 13(2): 51–65. https://doi.org/10.4491/eer.2008.13.2.051.
Kirchhofer, N.D., Rengert, Z.D., Dahlquist, F.W., Nguyen, T.-Q. & Bazan, G.C. (2017). A Ferrocene-Based Conjugated Oligoelectrolyte Catalyzes Bacterial Electrode Respiration. Chem, 2(2): 240–257. https://doi.org/10.1016/j.chempr.2017.01.001.
Kodesia, A., Ghosh, M. & Chatterjee, A. (2017). Development of Biofilm Nanowires and Electrode for Efficient Microbial Fuel Cells (MFCs). Thapar University Digital Repository (TuDR). http://hdl.handle.net/10266/4826.
Light, S.H., Su, L., Rivera-Lugo, R., Cornejo, J.A., Louie, A., Iavarone, A.T., Ajo-Franklin, C.M. & Portnoy, D.A. (2018). A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 562: 140–144. https://doi.org/10.1038/s41586-018-0498-z.
Lovley, D.R., Ueki, T., Zhang, T., Malvankar, N.S., Shrestha, P.M., Flanagan, K.A., Aklujkar, M., Butler, J.E., Giloteaux, L., Rotaru, A-E., Holmes, D.E., Franks, A.E., Orellana, R., Risso, C. & Nevin, K.P. (2011). Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv. Microb. Physiol., 59: 1-100. https://doi.org/10.1016/B978-0-12-387661-4.00004-5.
Lu, Z., Chang, D., Ma, J., Huang, G., Cai, L. & Zhang, L. (2015). Behavior of metal ions in bioelectrochemical systems: A review. J. Power Sources, 275: 243–260. https://doi.org/10.1016/j.jpowsour.2014.10.168
Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.C., Inoue, K., Mester, T., Covalla, S.F., Johnson, J.P., Rotello, V.M., Tuominen, M.T. & Lovley, D.R. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol., 6(9): 573–579. https://doi.org/10.1038/nnano.2011.119.
Malvankar, N.S. & Lovley, D.R. (2012). Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem, 5(6): 1039–1046. https://doi.org/10.1002/cssc.201100733.
Malvankar, N.S. & Lovley, D.R. (2014). Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol., 27: 88–95. https://doi.org/10.1016/j.copbio.2013.12.003.
Maruthupandy, M., Anand, M., Maduraiveeran, G., Beevi, A.S.H. & Priya, R.J. (2017). Fabrication of CuO nanoparticles coated bacterial nanowire film for a high-performance electrochemical conductivity. J. Mater. Sci., 52(18): 10766–10778. https://doi.org/10.1007/s10853-017-1248-6.
Min, B., Cheng, S. & Logan, B.E. (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Water Res., 39(9): 1675–1686. https://doi.org/10.1016/j.watres.2005.02.002.
Nealson, K.H. (2017). Bioelectricity (electromicrobiology) and sustainability. Microb. Biotechnol., 10(5): 1114–1119. https://doi.org/10.1111/1751-7915.12834.
Nielsen, L.P. (2019). Electric bacteria in the spotlight. Electromicrobiology -- from electrons to ecosystems. Aarhus University, Denmark.
Pant, D., Van Bogaert, G., Diels, L. & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol., 101(6): 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017.
Perpetuo, E.A., Souza, C.B. & Nascimento, C.A.O. (2011). Engineering Bacteria for Bioremediation, Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications, Angelo Carpi, IntechOpen. https://doi.org/10.5772/19546.
Pirbadian, S. & El-Naggar, M.Y. (2012). Multistep hopping and extracellular charge transfer in microbial redox chains. Phys. Chem. Chem. Phys., 14(40): 13802–13808. https://doi.org/10.1039/c2cp41185g.
Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., Gorby, Y.A., Golbeck, J.H. & El-Naggar, M.Y. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. U.S.A., 111(35): 12883–12888. https://doi.org/10.1073/pnas.1410551111.
Poddar, S. & Khurana, S. (2011). Geobacter: the electric microbe! Efficient microbial fuel cells to generate clean, cheap electricity. Indian J. Microbiol., 51(2): 240–241. https://doi.org/10.1007/s12088-011-0180-8.
Polizzi, N.F., Skourtis, S.S. & Beratan, D.N. (2012). Physical constraints on charge transport through bacterial nanowires. Faraday Discuss., 155: 43–62. https://doi.org/10.1039/c1fd00098e.
Rashid, N., Cui, Y.-F., Saif Ur Rehman, M. & Han, J.-I. (2013). Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci. Total Environ., 456-457: 91–94. https://doi.org/10.1016/j.scitotenv.2013.03.067.
Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T. & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435: 1098–1101. https://doi.org/10.1038/nature03661.
Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L. & Lovley, D.R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol., 72(11): 7345–7348. https://doi.org/10.1128/AEM.01444-06.
Rizwan, Md., Singh, M., Mitra, C.K. & Morve, R.K. (2014). Ecofriendly Application of Nanomaterials: Nanobioremediation. J. Nanopart., Article ID 431787. https://doi.org/10.1155/2014/431787.
Saeed, H.M., Husseini, G.A., Yousef, S., Saif, J., Al-Asheh, S., Abu Fara, A., Azzam, S., Khawaga, R. & Aidan, A. (2015). Microbial desalination cell technology: A review and a case study. Desalination, 359: 1–13. https://doi.org/10.1016/j.desal.2014.12.024.
Scholz, F. & Schröder, U. (2003). Bacterial batteries. Nat. Biotechnol., 21: 1151–1152. https://doi.org/10.1038/nbt1003-1151.
Strik, D.P., Hamelers (Bert), H.V., Snel, J.F. & Buisman, C.J. (2008). Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res., 32(9): 870–876. https://doi.org/10.1002/er.1397.
Sure, S., Ackland, M.L., Torriero, A.A.J., Adholeya, A. & Kochar, M. (2016). Microbial nanowires: an electrifying tale. Microbiology, 162(12): 2017–2028. https://doi.org/10.1099/mic.0.000382.
Torres, C. (2012). Improving microbial fuel cells. Membrane Technology, 8: 8–9. https://doi.org/10.1016/S0958-2118(12)70165-9.
Sanders, R. (2018). Gut bacteria’s shocking secret: They produce electricity. University of California, Berkeley. Retrieved from https://news.berkeley.edu/2018/09/12/gut-bacterias-shocking-secret-they-produce-electricity.
Wang, Q., Jones, A.-A. D., Gralnick, J.A., Lin, L. & Buie, C.R. (2019). Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci. Adv., 5(1): eaat5664. https://doi.org/10.1126/sciadv.aat5664.
White, G.F., Shi, Z., Shi, L., Wang, Z., Dohnalkova, A.C., Marshall, M.J., Fredrickson, J.K., Zachara, J.M., Butt, J.N., Richardson, D.J. & Clarke, T.A. (2013). Electron exchange between cytochromes and minerals. Proc. Natl. Acad. Sci. U.S.A., 110(16): 6346-6351. https://doi.org/10.1073/pnas.1220074110.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 The author(s) retains the copyright of this article.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.