Antimicrobial effect of Chitosan and Nano-Chitosan against some Pathogens and Spoilage Microorganisms

Authors

  • Warda M. Abdeltwab Dairy Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt.
  • Yasser F. Abdelaliem Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt. https://orcid.org/0000-0002-8730-014X
  • Wedad A. Metry Dairy Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt.
  • Mahmoud Eldeghedy Dairy Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt.

Keywords:

Chitosan, Nano-chitosan, Antimicrobial activity, Pathogenic and Spoilage Microorganisms

Abstract

An experiment was conducted to investigate the antimicrobial effect of chitosan and nano-chitosan. Two Gram-negative, three Gram-positive bacteria and three fungal strains were used as test microorganisms. The obtained results indicated that 88% of nano-chitosan particle size was in the range of 93.76nm and 12% in 405nm. Nano-chitosan showed maximum antibacterial activity against S. aureus and L. monocytogenes with inhibition zone of 30mm (23µg/ml concentration) and the lowest 23mm with E. coli at the same concentration. Other tested bacteria were affected in different degrees. The MIC and MLC ranged between 64 to 256 and 128 to 512µg/ml, respectively. The highest effect was against S. aureus at 23.04µg/ml. Chitosan solution was found to have less antifungal activity against C. albicans when compared to nano-chitosan. MIC and MLC for chitosan and nano-chitosan were recorded at 64 and 128µg/ml with chitosan and 23.04 and 46.08µg/ml with nano-chitosan. The highest nano-chitosan activity was recorded against S. cerevisiae, 7 and 16µg/ml for MIC and MLC, respectively. Nano-chitosan at concentrations 3.0 and 4.5µg/ml were the most effective to retard fungal activity.

Downloads

Download data is not yet available.

References

Li, Q., Dunn, E.T., Grandmaison, E.W. & Goosen, M.F.A. (1992). Applications and Properties of Chitosan. J. Bioact. Compat. Polym., 7(4): 370–397. https://doi.org/10.1177/088391159200700406.

Razdan, A. & Pettersson, D. (1994). Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br. J. Nutr., 72(2): 277–288. https://doi.org/10.1079/bjn19940029.

Rout, S.K. (2001). Physicochemical, Functional and Spectroscopic Analysis of Crawfish Chitin and Chitosan as Affected by Process Modification. Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA.

Calvo, P., Remuñán-López, C., Vila-Jato, J.L. & Alonso, M.J. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci., 63(1): 125–132.

Ojagh, S.M., Rezaei, M., Razavi, S.H. & Hosseini, S.M.H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem., 120(1): 193–198. https://doi.org/10.1016/j.foodchem.2009.10.006.

Ramezani, Z., Zarei, M. & Raminnejad, N. (2015). Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control, 51: 43–48. https://doi.org/10.1016/j.foodcont.2014.11.015.

Kouchak, M., Sadeghi-Nejad, B. & Nikmanesh, M. (2015). Preparation and evaluation of composite coat containing chitosan nanoparticles on cheese to improve the stability of product. International journal of Comprehensive Leading Research in Science, 1(1): 41-55.

Roller, S. & Covill, N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol., 47(1-2): 67–77. https://doi.org/10.1016/s0168-1605(99)00006-9.

Rabea, E.I., Badawy, M.E., Stevens, C.V., Smagghe, G. & Steurbaut, W. (2003). Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules, 4(6): 1457–1465. https://doi.org/10.1021/bm034130m.

Chung, Y.C., Su, Y.P., Chen, C.C., Jia, G., Wang, H.L., Wu, J.C. & Lin, J.G. (2004). Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin., 25(7): 932–936.

Qi, L., Xu, Z., Jiang, X., Hu, C. & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res., 339(16): 2693–2700. https://doi.org/10.1016/j.carres.2004.09.007.

Cota-Arriola, O., Cortez-Rocha, M.O., Rosas-Burgos, E.C., Burgos-Hernández, A., López-Franco, Y.L. & Plascencia-Jatomea, M. (2011). Antifungal effect of chitosan on the growth of Aspergillus parasiticus and production of aflatoxin B1. Polym. Int., 60(6): 937–944. https://doi.org/10.1002/pi.3054.

Ing, L.Y., Zin, N.M., Sarwar, A. & Katas, H. (2012). Antifungal Activity of Chitosan Nanoparticles and Correlation with their Physical Properties. Int. J. Biomater., 2012, 632698. https://doi.org/10.1155/2012/632698.

Wolf, C.E. & Gibbons, W.R. (1996). Improved method for quantification of the bacteriocin nisin. J. Appl. Bacteriol., 80(4): 453–457. https://doi.org/10.1111/j.1365-2672.1996.tb03242.x.

Soleimani, N., Mobarez, A.M., Olia, M. & Atyabi, F. (2015). Synthesis, Characterization and Effect of the Antibacterial Activity of Chitosan Nanoparticles on Vancomycin-Resistant Enterococcus and Other Gram Negative or Gram Positive Bacteria. Int. J. Pure Appl. Sci. Technol., 26(1): 14-23.

Maghami, G.G. & Roberts, G.A.F. (1988). Evaluation of the viscometric constants for chitosan. Makromol. Chem., 189(1): 195–200. https://doi.org/10.1002/macp.1988.021890118.

Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y. & Yang, C. (2002). Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. Biomaterials, 23(15): 3193–3201. https://doi.org/10.1016/S0142-9612(02)00071-6.

Baron, E.J., Peterson, L.R. & Finegold, S.M. (1994). Bailey & Scott's diagnostic microbiology. 9th ed., Mosby, St. Louis. pp. 168-188.

Zimbro, M.J., Power, D.A., Miller, S.M., Wilson, G.E. & Johnson J.A. (2009). Difco™ & BBL™ manual: Manual of microbiological culture media. 2nd ed., Becton Dickinson & Company, Sparks, MD.

Duncan, D.B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1): 1-42. https://doi.org/10.2307/3001478.

Chen, Y., Mohanraj, V.J., Wang, F. & Benson, H.A. (2007). Designing chitosan-dextran sulfate nanoparticles using charge ratios. AAPS PharmSciTech, 8(4): 131–139. https://doi.org/10.1208/pt0804098.

Müller, R.H., Jacobs, C. & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev., 47(1): 3–19. https://doi.org/10.1016/s0169-409x(00)00118-6.

Shahidi, F., Arachchi, J.K.V. & Jeon, Y.J. (1999). Food applications of chitin and chitosans. Trends Food Sci. Technol., 10(2): 37–51. https://doi.org/10.1016/S0924-2244(99)00017-5.

Jia, Z., Shen, D. & Xu, W. (2001). Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr. Res., 333(1): 1–6. https://doi.org/10.1016/S0008-6215(01)00112-4.

Yi, Y., Wang, Y. & Liu, H. (2003). Preparation of new crosslinked chitosan with crown ether and their adsorption for silver ion for antibacterial activities. Carbohydr. Polym., 53(4): 425–430. https://doi.org/10.1016/S0144-8617(03)00104-8.

Balicka-Ramisz, A., Wojtasz-Pajak, A., Pilarczyk, B., Ramisz, A. & Laurans, L. (2005). Antibacterial and antifungal activity of chitosan. In: Proceedings of the XIIth ISAH Congress in Animal Hygiene, vol 2. Warsaw, Poland. pp. 406–408.

Downloads

Abstract views: 21 / PDF downloads: 22

Published

2019-01-14

How to Cite

Abdeltwab, W. M., Abdelaliem, Y. F., Metry, W. A., & Eldeghedy, M. (2019). Antimicrobial effect of Chitosan and Nano-Chitosan against some Pathogens and Spoilage Microorganisms. Advances in BioScience, 10(1), 8–15. Retrieved from https://journals.sospublication.co.in/ab/article/view/259

Issue

Section

Articles