Evaluation of biological Control potential for different Trichoderma strains against Root-Knot Nematode Meloidogyne javanica

Authors

  • Nada F. Hemeda Department of Genetics, Faculty of Agriculture, Fayoum University, Fayuom, Egypt. https://orcid.org/0000-0002-1570-7944
  • M. A. El Deeb Department of Plant Protection, Faculty of Agriculture, Fayoum University, Fayuom, Egypt.

Keywords:

Trichoderma spp., Biocontrol agent, Meloidogyne, RAPD marker

Abstract

Twenty strains of four Trichoderma species (Trichoderma harzianum, Trichoderma viride, Trichoderma koningii and Trichoderma asperellum) were evaluated for its potential to control the root-knot nematode Meloidogyne javanica. Culture filtrates from Trichoderma strains were tested in 24-well tissue culture plates for effects on Meloidogyne javanica. Chitwood egg hatch and mobility of hatched second-stage juveniles (J2) were evaluated, all the twenty Trichoderma strains showed the ability to colonize M. javanica separated eggs and second-stage juveniles (J2) in sterile in vitro assays. T. asperellum possess the strongest egg-parasitic ability and very effective against 2nd stage larvae of M. javanica.

In this investigation, randomly amplified polymorphic DNA (RAPD) markers was used to estimate the genetic variations between four strains of Trichoderma asperellum (KC898190, KC898191, KC898192 and KC898193) which were previously isolated from the rhizospheres of different plants growing in Fayoum Governorate, Egypt as a new strain of T. asperellum in Egypt. RAPD assay using 6 random primers identified T. asperellum strains with 5 specific unique markers.

Downloads

Download data is not yet available.

References

Jatala, P. (1986). Biological Control of Plant-Parasitic Nematodes. Annu. Rev. Phytopathol., 24(1): 453–489. https://doi.org/10.1146/annurev.py.24.090186.002321.

Spiegel, Y. & Chet, I. (1998). Evaluation of Trichoderma spp. as a Biocontrol Agent against Soilborne Fungi and Plant-parasitic Nematodes in Israel. Integrated Pest Manag. Rev., 3(3): 169–175. https://doi.org/10.1023/A:1009625831128.

Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O. & Spiegel, Y. (2001). Biological Control of the Root-Knot Nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91(7): 687–693. https://doi.org/10.1094/PHYTO.2001.91.7.687.

Sharon, E., Chet, I., Viterbo, A., Bar-Eyal, M., Nagan, H., Samuels, G.J. & Spiegel, Y. (2007). Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur. J. Plant Pathol., 118(3): 247–258. https://doi.org/10.1007/s10658-007-9140-x.

Sharon, E., Chet, I. & Spiegel, Y. (2011). Trichoderma as a Biological Control Agent. In: Davies, K. & Spiegel, Y. (eds), Biological Control of Plant-Parasitic Nematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms. Springer, Berlin, pp. 183–202. https://doi.org/10.1007/978-1-4020-9648-8_8.

Affokpon, A., Coyne, D.L., Htay, C.C., Agbèdè, R.D., Lawouin, L. & Coosemans, J. (2011). Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol. Biochem., 43(3): 600–608. https://doi.org/10.1016/j.soilbio.2010.11.029.

Mascarin, G.M., Bonfim Junior, M.F. & Filho, J.V. (2012). Trichoderma harzianum reduces population of Meloidogyne incognita in cucumber plants under greenhouse conditions. J. Entomol. Nematol., 4(6): 54–57. https://doi.org/10.5897/JEN.9000041.

Naserinasab, F., Sahebani, N. & Etebarian, H.R. (2011). Biological Control of Meloidogyne javanica by Trichoderma harzianum BI and Salicylic Acid on Tomato. Afr. J. Food Sci., 5: 276–280.

Rao, M.S., Reddy, P.P. & Nagesh, M. (1998). Evaluation of Plant Based Formulations of Trichoderma Harzianum for the Management of Meloidogyne Incognita on Egg Plant. Nematol. Mediterr., 26: 59–62.

Spiegel, Y., Sharon, E., Bar-Eyal, M., Maghodia, A. & Chet, I. (2007). Evaluation and mode of action of Trichoderma isolates as biocontrol agents against plant-parasitic nematodes. Proceedings of IOBC/WPRS Meeting, Spa, Belgium, IOBC/WPRS Bulletin, 30: 129–133.

AL-Shammari, T.A., Bahkali, A.H., Elgorban, A.M., ElKahky, M.T. & Al-Sum, B.A. (2013). The Use of Trichoderma longibrachiatum and Mortierella alpina against Root-Knot Nematode, Meloidogyne javanica on Tomato. J. Pure Appl. Microbiol., 7: 199–207.

Sariah, M., Choo, C.W., Zakaria, H. & Norihan, M.S. (2005). Quantification and characterisation of Trichoderma spp. from different ecosystems. Mycopathologia, 159(1): 113–117. https://doi.org/10.1007/s11046-004-4432-6.

Harman, G.E. (2000). Myths and Dogmas of Biocontrol Changes in Perceptions Derived from Research on Trichoderma harzinum T-22. Plant Dis., 84(4): 377–393. https://doi.org/10.1094/PDIS.2000.84.4.377.

Sahebani, N. & Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem., 40(8): 2016–2020. https://doi.org/10.1016/j.soilbio.2008.03.011.

Jindapunnapat, K., Chinnasri, B. & Kwankuae, S. (2013). Biological Control of Root-Knot Nematodes (Meloidogyne enterolobii) in Guava by the Fungus Trichoderma harzianum. J. Dev. Sus. Agr., 8(2): 110–118. https://doi.org/10.11178/jdsa.8.110.

Montesinos, E. & Bonaterra, A. (1996). Dose-response models in biological control of plant pathogens: an empirical verification. Phytopathology, 86: 464–472. http://dx.doi.org/10.1094/Phyto-86-464.

Smith, K.P., Handelsman, J. & Goodman, R.M. (1997). Modeling dose-response relationships in biological control: partitioning host responses to the pathogen and biocontrol agent. Phytopathology, 87(7): 720–729. https://doi.org/10.1094/PHYTO.1997.87.7.720.

Hartmann, K.M. & Sasser, J.N. (1984). Identification of Meloidogyne species on the basis of differential host test and perineal pattern morphology. In: Barker, K.R., Carter, C.C. & Sasser, J.N. (eds), An advanced treatise on Meloidogyne, Vol. II, Methodology. Raleigh, NC: A Cooperative Publication of the Department of Plant Pathology and Genetics, North Carolina State University, and the United States Agency for International Development, pp. 69-77.

Taylor, A.L. & Sasser, J.N. (1978). Biology, identification, and control of root-knot nematodes (Meloidogyne species). International Meloidogyne Project, Raleigh: Department of Plant Pathology, North Carolina State University and the United States Agency for International Development, pp. 111.

Hassan, G. & Hemeda, N. (2016). In vitro assessment of Trichoderma asperellum isolated from plant rhizosphere and evaluation of their potential activity against some pathogenic fungi. Egypt. J. Genet. Cytol., 45(1): 113–128. http://dx.doi.org/10.21608/ejgc.2016.9701.

Nitao, J.K., Meyer, S.L. & Chitwood, D.J. (1999). In-vitro Assays of Meloidogyne incognita and Heterodera glycines for Detection of Nematode-antagonistic Fungal Compounds. J. Nematol., 31(2): 172–183.

Meyer, S.L.F., Massoud, S.I., Chitwood, D.J. & Roberts, D.P. (2000). Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology, 2(8): 871–879. https://doi.org/10.1163/156854100750112815.

Oostenbrink, M. (1966). Major characteristics of the relation between nematodes and plants. Mededelingen / Landbouwhogeschool Wageningen no. 66-4, Veenman, Wageningen, pp. 46.

Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A. & Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18(22): 6531–6535. https://doi.org/10.1093/nar/18.22.6531.

Sneath, P.H.A. & Sokal, R.R. (1973). Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman & Co., San Francisco, pp. 573.

Rao, M.S., Reddy, P.P. & Nagesh, M. (1997). Management of root-knot nematode, Meloidogyne incognita on tomato by integration of Trichoderma harzianum with neem cake. J. Plant Dis. Prot., 104(4): 423-425.

Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 18(24): 7213–7218. https://doi.org/10.1093/nar/18.24.7213.

Gopal, K., Sreenivasulu, Y., Gopi, V., Prasadbabu, G., Kumar, T.B., Madhusudhan, P., Ahemed, S.K. & Palanivel, S.G. (2008). Genetic variability and relationships among seventeen Trichoderma isolates to control dry root rot disease using RAPD markers. Z. Naturforsch., 63c: 740–746. https://doi.org/10.1515/znc-2008-9-1020.

Pandya, J.R., Sabalpara, A.N. & Mahatma, M. (2017). Randomly Amplified Polymorphic DNA Analysis of Native Trichoderma Isolates. Asian J. Appl. Sci. Technol., 1: 147-150.

Sagar, M.S.I., Meah, M.B., Rahman, M.M. & Ghose, A. K. (2011). Determination of genetic variations among different Trichoderma isolates using RAPD marker in Bangladesh. J. Bangladesh Agric. Univ., 9(1): 9–20. http://dx.doi.org/10.3329/jbau.v9i1.8738.

Downloads

Abstract views: 32 / PDF downloads: 21

Published

2019-01-14

How to Cite

Hemeda, N. F., & El Deeb, M. A. (2019). Evaluation of biological Control potential for different Trichoderma strains against Root-Knot Nematode Meloidogyne javanica. Advances in BioScience, 10(1), 16–22. Retrieved from https://journals.sospublication.co.in/ab/article/view/258

Issue

Section

Articles