Prevalence of Methicillin-resistant Staphylococcus aureus (MRSA) among Staphylococcus aureus collection at Sebha medical center


  • Khadija M. Ahmad Department of Microbiology, Faculty of Medicine, Sebha University, 18758, Sebha, Libya.
  • Almahdi A. M. Alamen Department of Microbiology, Sebha Medical center, Sebha, Libya.
  • Fatima A. Atiya Department of Microbiology, Faculty of Science, Sebha University, P.O. Box 18758, Sebha-Libya.
  • Abdelkader A. Elzen Department of Microbiology, Faculty of Science, Sebha University, P.O. Box 18758, Sebha-Libya.


Opportunistic organism, S. aureus, MRSA, MDR, Clindamycin, D-test


The prevalence of multidrug-resistant Staphylococcus aureus has increased during the last few years in healthcare facilities, and methicillin-resistant Staphylococcus (MRSA) in particular has emerged as a serious nosocomial pathogen because it is difficult to destroy and treat. Therefore, this study was carried on to find out the frequency of MRSA among S. aureus isolates as well as to study their susceptibility profile. In this study, 43 strains of S. aureus were recovered from different departments at Sebha medical center and their antibiotic resistance profile was studied using Kirby Bauer disc diffusion method. Out of all 43 isolates, 16% were detected as MRSA using cefoxitin disk test. The strains that are resistant to erythromycin were further tested for inducible clindamycin resistance (ICR) using D-test. In this study, two strains showed ICR phenotype. While all isolates were 100% sensitive to vancomycin, the majority of isolates were resistant to ß-lactam group antibiotics. We observed that 14% of all isolates were resistant to ß-lactamase inhibitor. The response of S. aureus isolates to other antibiotics e.g. quinolone, aminoglycosides, tetracycline and macrolides was variable. In our study, it seemed to be vancomycin is the only antibiotic that still keeping its potency and it can be used for treatment of infections caused by multidrug-resistant MRSA.


Download data is not yet available.


Verma, S., Joshi, S., Chitnis, V., Hemwani, N. & Chitnis, D. (2000). Growing problem of methicillin resistant staphylococci--Indian scenario. Indian J. Med. Sci., 54(12): 535–540.

Sasirekha, B., Usha, M.S., Amruta, J.A., Ankit, S., Brinda, N. & Divya, R. (2014). Incidence of constitutive and inducible clindamycin resistance among hospital-associated Staphylococcus aureus. 3 Biotech, 4(1): 85–89.

Wertheim, H.F., Melles, D.C., Vos, M.C., van Leeuwen, W., van Belkum, A., Verbrugh, H.A. & Nouwen, J.L. (2005). The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis., 5(12): 751–762.

Kazakova, S.V., Hageman, J.C., Matava, M., Srinivasan, A., Phelan, L., Garfinkel, B., Boo, T., McAllister, S., Anderson, J., Jensen, B., Dodson, D., Lonsway, D., McDougal, L.K., Arduino, M., Fraser, V.J., Killgore, G., Tenover, F.C., Cody, S. & Jernigan, D.B. (2005). A clone of methicillin-resistant Staphylococcus aureus among professional football players. N. Engl. J. Med., 352(5): 468–475.

Jevons, M.P. (1961). “Celbenin” - resistant Staphylococci. Br. Med. J., 1(5219): 124–125.

de Kraker, M.E., Davey, P.G. & Grundmann, H. (2011). Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med., 8(10): e1001104.

Falagas, M.E., Karageorgopoulos, D.E., Leptidis, J. & Korbila, I.P. (2013). MRSA in Africa: filling the global map of antimicrobial resistance. PLoS One, 8(7): e68024.

Carroll, D., Kehoe, M.A., Cavanagh, D. & Coleman, D.C. (1995). Novel organization of the site-specific integration and excision recombination functions of the Staphylococcus aureus serotype F virulence-converting phages φ13 and φ42. Mol. Microbiol., 16(5): 877–893.

Hanssen, A.M. & Ericson Sollid, J.U. (2006). SCCmec in staphylococci: genes on the move. FEMS Immunol. Med. Microbiol., 46(1): 8–20.

Chambers, H.F. & Deleo, F.R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol., 7(9): 629–641.

Ito, T., Katayama, Y. & Hiramatsu, K. (1999). Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob. Agents Chemother., 43(6): 1449–1458.

Katayama, Y., Ito, T. & Hiramatsu, K. (2001). Genetic organization of the chromosome region surrounding mecA in clinical staphylococcal strains: role of IS431-mediated mecI deletion in expression of resistance in mecA-carrying, low-level methicillin-resistant Staphylococcus haemolyticus. Antimicrob. Agents Chemother., 45(7): 1955–1963.

Deurenberg, R.H. & Stobberingh, E.E. (2008). The evolution of Staphylococcus aureus. Infect. Genet. Evol., 8(6): 747–763.

Baddour, M.M., Abuelkheir, M.M. & Fatani, A.J. (2006). Trends in antibiotic susceptibility patterns and epidemiology of MRSA isolates from several hospitals in Riyadh, Saudi Arabia. Ann. Clin. Microbiol. Antimicrob., 5: 30.

Koyama, N., Inokoshi, J. & Tomoda, H. (2012). Anti-infectious agents against MRSA. Molecules, 18(1): 204–224.

Torimiro, N., Moshood, A.A. & Eyiolawi, S.A. (2013). Analysis of Beta-lactamase production and Antibiotics resistance in Staphylococcus aureus strains. J. Infect. Dis. Immun., 5(3): 24-28.

Leclercq, R. (2002). Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin. Infect. Dis., 34(4): 482–492.

Srinivasan, A., Dick, J.D. & Perl, T.M. (2002). Vancomycin resistance in staphylococci. Clin. Microbiol. Rev., 15(3): 430–438.

Johnson, A.P. & Woodford, N. (2002). Glycopeptide-resistant Staphylococcus aureus. J. Antimicrob. Chemother., 50(5): 621–623.

Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T. & Tenover, F.C. (1997). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother., 40(1): 135–136.

Zorgani, A., Elahmer, O., Franka, E., Grera, A., Abudher, A. & Ghenghesh, K.S. (2009). Detection of meticillin-resistant Staphylococcus aureus among healthcare workers in Libyan hospitals. J. Hosp. Infect., 73(1): 91–92.

Ahmed, M.O., Alghazali, M.H., Abuzweda, A.R. & Amri, S.G. (2010). Detection of inducible clindamycin resistance (MLSBi) among methicillin-resistant Staphylococcus aureus (MRSA) from Libya. Libyan J. Med., 5: 1.

Ahmed, M.O., Elramalli, A.K., Amri, S.G., Abuzweda, A.R. & Abouzeed, Y.M. (2012). Isolation and screening of methicillin-resistant Staphylococcus aureus from health care workers in Libyan hospitals. East. Mediterr. Health J., 18(1): 37–42.

Buzaid, N., Elzouki, A.N., Taher, I. & Ghenghesh, K.S. (2011). Methicillin-resistant Staphylococcus aureus (MRSA) in a tertiary surgical and trauma hospital in Benghazi, Libya. J. Infect. Dev. Ctries., 5(10): 723–726.

Sifaw Ghenghesh, K., Rahouma, A., Tawil, K., Zorgani, A. & Franka, E. (2013). Antimicrobial resistance in Libya: 1970-2011. Libyan J. Med., 8(1): 20567.

Khanal, R., Sah, P., Lamichhane, P., Lamsal, A., Upadhaya, S. & Pahwa, V.K. (2015). Nasal carriage of methicillin resistant Staphylococcus aureus among health care workers at a tertiary care hospital in Western Nepal. Antimicrob. Resist. Infect. Control, 4: 39.

Wareg, S.E., Foster, H.A. & Daw, M.A. (2014). Antimicrobial Susceptibility Patterns of Methicillin-Resistant Staphylococcus aureus Isolates Collected from Healthcare and Community Facilities in Libya Show a High Level of Resistance to Fusidic Acid. J. Infect. Dis. Ther., 2: 189.

BenDarif, E., Khalil, A., Rayes, A., Bennour, E., Dhawi, A., Lowe, J.J., Gibbs, S. & Goering, R.V. (2016). Characterization of methicillin-resistant Staphylococcus aureus isolated at Tripoli Medical Center, Libya, between 2008 and 2014. J. Med. Microbiol., 65(12): 1472–1475.

Al-Abdli, N.E. & Baiu, S.H. (2016). Isolation of MRSA Strains from Hospital Environment in Benghazi City, Libya. Am. J. Infect. Dis., 4(2): 41–43.

Pant, N.D. & Sharma, M. (2016). Carriage of methicillin resistant Staphylococcus aureus and awareness of infection control among health care workers working in intensive care unit of a hospital in Nepal. Braz. J. Infect. Dis., 20(2): 218–219.

El Aila, N.A., Al Laham, N.A. & Ayesh, B.M. (2017). Nasal carriage of methicillin resistant Staphylococcus aureus among health care workers at Al Shifa hospital in Gaza Strip. BMC Infect. Dis., 17: 28.

Albrich, W.C. & Harbarth, S. (2008). Health-care workers: source, vector, or victim of MRSA? Lancet Infect. Dis., 8(5): 289–301.

Zorgani, A., Shawerf, O., Tawil, K., El-Turki, E. & Ghenghesh, K. (2009). Inducible Clindamycin Resistance among Staphylococci Isolated from Burn Patients. Libyan J. Med., 4(3): 104–106.

CLSI (2011). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. CLSI document M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute.

Fiebelkorn, K.R., Crawford, S.A., McElmeel, M.L. & Jorgensen, J.H. (2003). Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J. Clin. Microbiol., 41(10): 4740–4744.

Heudorf, U., Albert-Braun, S., Hunfeld, K.P., Birne, F.U., Schulze, J., Strobel, K., Petscheleit, K., Kempf, V.A. & Brandt, C. (2016). Multidrug-resistant organisms in refugees: prevalences and impact on infection control in hospitals. GMS Hyg. Infect. Control, 11: Doc16.

Ravensbergen, S.J., Berends, M., Stienstra, Y. & Ott, A. (2017). High prevalence of MRSA and ESBL among asylum seekers in the Netherlands. PLoS One, 12(4): e0176481.

Koole, K., Ellerbroek, P.M., Lagendijk, R., Leenen, L.P.H. & Ekkelenkamp, M.B. (2013). Colonization of Libyan civil war casualties with multidrug-resistant bacteria. Clin. Microbiol. Infect., 19(7): E285–E287.

Brumfitt, W. & Hamilton-Miller, J. (1989). Methicillin-resistant Staphylococcus aureus. N. Engl. J. Med., 320(18): 1188–1196.

Fuda, C., Suvorov, M., Vakulenko, S.B. & Mobashery, S. (2004). The Basis for Resistance to β-Lactam Antibiotics by Penicillin-binding Protein 2a of Methicillin-resistant Staphylococcus aureus. J. Biol. Chem., 279(39): 40802–40806.

Michel, M. & Gutmann, L. (1997). Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci: therapeutic realities and possibilities. Lancet, 349(9069): 1901–1906.

Schito, G.C. (2002). Is antimicrobial resistance also subject to globalization? Clin. Microbiol. Infect., 8: 1–8.

Anupurba, S., Sen, M.R., Nath, G., Sharma, B.M., Gulati, A.K. & Mohapatra, T.M. (2003). Prevalence of methicillin resistant Staphylococcus aureus in a tertiary referral hospital in eastern Uttar Pradesh. Indian J. Med. Microbiol., 21(1): 49–51.

Saravanan, M. & Nanda, A. (2010). Incidence of methicillin resistant Staphylococcus aureus (MRSA) from septicemia suspected children. Indian J. Sci. Technol., 2(12): 36–39.

Smith, S.M., Eng, R.H. & Tecson-Tumang, F. (1989). Ciprofloxacin therapy for methicillin-resistant Staphylococcus aureus infections or colonizations. Antimicrob. Agents Chemother., 33(2): 181-184.

Ubukata, K., Itoh-Yamashita, N. & Konno, M. (1989). Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother., 33(9): 1535–1539.

Raviglione, M.C., Boyle, J.F., Mariuz, P., Pablos-Mendez, A., Cortes, H. & Merlo, A. (1990). Ciprofloxacin-resistant methicillin-resistant Staphylococcus aureus in an acute-care hospital. Antimicrob. Agents Chemother., 34(11): 2050–2054.

Abdalla, A.M., Elzen, A.A.G., Alshahed, A., Abu Azoom, G., Heeba, A., Mohammed, G.A., Yunis, H. & Mohammed, N. (2015). Identification and determination of antibiotic resistance of pathogenic bacteria Isolated from Septic Wounds. J. Adv. Lab. Res. Biol., 6(4): 97–101.

Goff, D.A. & Dowzicky, M.J. (2007). Prevalence and regional variation in meticillin-resistant Staphylococcus aureus (MRSA) in the USA and comparative in vitro activity of tigecycline, a glycylcycline antimicrobial. J. Med. Microbiol., 56: 1189–1193.

Watkins, R.R., David, M.Z. & Salata, R.A. (2012). Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus. J. Med. Microbiol., 61: 1179–1193.

Tarai, B., Das, P. & Kumar, D. (2013). Recurrent Challenges for Clinicians: Emergence of Methicillin-Resistant Staphylococcus aureus, Vancomycin Resistance, and Current Treatment Options. J. Lab. Physicians, 5(2): 71–78.

Frank, A.L., Marcinak, J.F., Mangat, P.D., Tjhio, J.T., Kelkar, S., Schreckenberger, P.C. & Quinn, J.P. (2002). Clindamycin treatment of methicillin-resistant Staphylococcus aureus infections in children. Pediatr. Infect. Dis. J., 21(6): 530–534.

Ajantha, G.S., Kulkarni, R.D., Shetty, J., Shubhada, C. & Jain, P. (2008). Phenotypic detection of inducible clindamycin resistance among Staphylococcus aureus isolates by using the lower limit of recommended inter-disk distance. Indian J. Pathol. Microbiol., 51(3): 376–378.

Nikam, A.P., Bhise, P.R. & Deshmukh, M.M. (2017). Phenotypic detection of inducible clindamycin resistance among Staphylococcus aureus isolates. Int. J. Res. Med. Sci., 5(2): 543–547.


Abstract views: 18 / PDF downloads: 9



How to Cite

Ahmad, K. M., Alamen, A. A. M., Atiya, F. A., & Elzen, A. A. (2018). Prevalence of Methicillin-resistant Staphylococcus aureus (MRSA) among Staphylococcus aureus collection at Sebha medical center. Advances in BioScience, 9(1), 1–8. Retrieved from