Increased level of miRNA 30b-3p in patients with prostatic hyperplasia and testosterone with high-level of prostate-specific antigen

Authors

  • Wasnaa Jumaa Mohammad Microbiology and Immunology Department of Basic Science, College of Nursing, University of Baghdad, Iraq.
  • Ban Hussein Hameedi Department of Zoology, Department of Basic Science, College of Nursing, University of Baghdad, Iraq.
  • Noor Alhuda Khalil Iberahim Department of Biochemistry, Department of Basic Science, College of Nursing, University of Baghdad, Iraq.

Keywords:

Prostate cancer, Hyperplasia, ELISA, Prostate-Specific Antigen, miRNA 30b-3p, Testosterone

Abstract

Background: Prostate cancer (PCa) is the most common causing cancer-related in death in men and lack of reliable diagnostic tool. MicroRNAs are small molecules single-stranded RNA that affecting protein expression at the level of translation and dysregulation can dramatically affect cell metabolism. However, the using of circulating miRNAs as diagnostic biomarkers for diagnosis of PCa is still unknown.

Methods: Ten patients with prostatic hyperplasia with high-level of PSA and 10 healthy controls were conducted in this study. The reverse transcription of miRNA based on quantitative polymerase chain reaction (qPCR) were used for evaluating the dysregulation of miRNA 30b-3p and using of ELISA to evaluate the level of prostate-specific antigen (PSA) and testosterone hormone.

Results: Circulating miRNA 30b-3p level was increased in patients with prostatic hyperplasia with higher level of PSA as compared with healthy controls. Also, the testosterone hormone was increased in those patients as compared with normal level of testosterone in healthy individuals.

Conclusion: The serum miRNA 30b-3p level increased in patients with hyperplasia in prostate and may be one of potential biomarker for diagnosis of PCa.

Downloads

Download data is not yet available.

References

Jensen, R.E., Potosky, A.L., Moinpour, C.M., Lobo, T., Cella, D., Hahn, E.A., Thissen, D., Smith, A.W., Ahn, J., Luta, G. & Reeve, B.B. (2017). United States Population-Based Estimates of Patient-Reported Outcomes Measurement Information System Symptom and Functional Status Reference values for Individuals with Cancer. J. Clin. Oncol., 35(17): 1913–1920. https://doi.org/10.1200/JCO.2016.71.4410.

Ferrer-Batallé, M., Llop, E., Ramírez, M., Aleixandre, R.N., Saez, M., Comet, J., de Llorens, R. & Peracaula, R. (2017). Comparative Study of Blood-Based Biomarkers, α2,3-Sialic Acid PSA and PHI, for High-Risk Prostate Cancer Detection. Int. J. Mol. Sci., 18(4): 845. https://doi.org/10.3390/ijms18040845.

Shen, P., Zhao, J., Sun, G., Chen, N., Zhang, X., Gui, H., Yang, Y., Liu, J., Shu, K., Wang, Z. & Zeng, H. (2017). The roles of prostate-specific antigen (PSA) density, prostate volume, and their zone-adjusted derivatives in predicting prostate cancer in patients with PSA less than 20.0 ng/mL. Andrology, 5(3): 548–555. https://doi.org/10.1111/andr.12322.

Najeeb, M.A., Ahmad, Z., Shakoor, R.A., Mohamed, A. & Kahraman, R. (2017). A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements. Talanta, 168: 52–61. https://doi.org/10.1016/j.talanta.2017.03.022.

Li, S., Shi, M., Zhao, J., Zhang, L., Huang, Y. & Zhao, S. (2017). A highly sensitive capillary electrophoresis immunoassay strategy based on dual-labeled gold nanoparticles enhancing chemiluminescence for the detection of prostate-specific antigen. Electrophoresis, 38: 1780–1787. https://doi.org/10.1002/elps.201600396

Huang, H.Q., Zhang, Y. & Xu, H.G. (2017). Different free prostate-specific antigen to total prostate-specific antigen ratios using three detecting systems. J. Clin. Lab. Anal., 32(2): e22231. https://doi.org/10.1002/jcla.22231.

Takeuchi, H., Ohori, M. & Tachibana, M. (2017). Clinical significance of the prostate-specific antigen doubling time prior to and following radical prostatectomy to predict the outcome of prostate cancer. Mol. Clin. Oncol., 6(2): 249–254. https://doi.org/10.3892/mco.2016.1116.

Dunn, M.W. (2017). Prostate Cancer Screening. Semin. Oncol. Nurs., 33(2): 156–164. https://doi.org/10.1016/j.soncn.2017.02.003.

Amankwah, E.K. & Park, J.Y. (2012). miRNAs in human prostate cancer. In: Sahu, S.C. (ed.), Toxicology and Epigenetics. 1st edn, John Wiley & Sons, UK.

Bentwich, I. (2005). Prediction and validation of microRNAs and their targets. FEBS Lett., 579(26): 5904–5910. https://doi.org/10.1016/j.febslet.2005.09.040.

Wahid, F., Shehzad, A., Khan, T. & Kim, Y.Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta, 1803(11): 1231–1243. https://doi.org/10.1016/j.bbamcr.2010.06.013.

Wach, S., Nolte, E., Szczyrba, J., Stöhr, R., Hartmann, A., Ørntoft, T., Dyrskjøt, L., Eltze, E., Wieland, W., Keck, B., Ekici, A.B., Grässer, F. & Wullich, B. (2012). MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int. J. Cancer, 130(3): 611–621. https://doi.org/10.1002/ijc.26064.

Pang, Y., Young, C.Y. & Yuan, H. (2010). MicroRNAs and prostate cancer. Acta Biochim. Biophys. Sin., 42(6): 363–369. https://doi.org/10.1093/abbs/gmq038.

Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 19(1): 92–105. https://doi.org/10.1101/gr.082701.108.

Llukani, E., Katz, B.F., Agalliu, I., Lightfoot, A., Yu, S.S., Kathrins, M., Lee, Z., Su, Y.K., Monahan Agnew, K., McGill, A., Eun, D.D. & Lee, D.I. (2017). Low levels of serum testosterone in middle-aged men impact pathological features of prostate cancer. Prostate Int., 5(1): 17–23. https://doi.org/10.1016/j.prnil.2016.12.003.

Huggins, C. & Hodges, C.V. (2002). Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. (Reprinted from Cancer Research, 1: 293-297, 1941). J. Urol., 168(1): 9–12. https://doi.org/10.1016/s0022-5347(05)64820-3.

Sidaway, P. (2017). Testosterone replacement affects disease risk. Nat. Rev. Urol., 14: 327. https://doi.org/10.1038/nrurol.2017.48.

Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F. & Croce, C.M. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U.S.A., 99(24): 15524–15529. https://doi.org/10.1073/pnas.242606799.

Calin, G.A. & Croce, C.M. (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer, 6(11): 857–866. https://doi.org/10.1038/nrc1997.

Cummins, J.M. & Velculescu, V.E. (2006). Implications of micro-RNA profiling for cancer diagnosis. Oncogene, 25(46): 6220–6227. https://doi.org/10.1038/sj.onc.1209914.

Tricoli, J.V. & Jacobson, J.W. (2007). MicroRNA: Potential for Cancer Detection, Diagnosis, and Prognosis. Cancer Res., 67(10): 4553–4555. https://doi.org/10.1158/0008-5472.CAN-07-0563.

Kumar, B., Khaleghzadegan, S., Mears, B., Hatano, K., Kudrolli, T.A., Chowdhury, W.H., Yeater, D.B., Ewing, C.M., Luo, J., Isaacs, W.B., Marchionni, L. & Lupold, S.E. (2016). Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget, 7(45): 72593–72607. https://doi.org/10.18632/oncotarget.12241.

Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O'Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B. & Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA, 105(30): 10513–10518. https://doi.org/10.1073/pnas.0804549105.

Mahn, R., Heukamp, L.C., Rogenhofer, S., von Ruecker, A., Müller, S.C. & Ellinger, J. (2011). Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology, 77(5): P1265.e9-1265.e16. https://doi.org/10.1016/j.urology.2011.01.020.

Chen, Z.H., Zhang, G.L., Li, H.R., Luo, J.D., Li, Z.X., Chen, G.M. & Yang, J. (2012). A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate, 72(13): 1443–1452. https://doi.org/10.1002/pros.22495.

Selth, L.A., Townley, S., Gillis, J.L., Ochnik, A.M., Murti, K., Macfarlane, R.J., Chi, K.N., Marshall, V.R., Tilley, W.D. & Butler, L.M. (2012). Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int. J. Cancer, 131(3): 652–661. https://doi.org/10.1002/ijc.26405.

Yaman Agaoglu, F., Kovancilar, M., Dizdar, Y., Darendeliler, E., Holdenrieder, S., Dalay, N. & Gezer, U. (2011). Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol., 32(3): 583–588. https://doi.org/10.1007/s13277-011-0154-9.

Endogenous Hormones and Prostate Cancer Collaborative Group, Roddam, A.W., Allen, N.E., Appleby, P. & Key, T.J. (2008). Endogenous sex hormones and prostate cancer: a collaborative analysis of 18 prospective studies. J. Natl. Cancer Inst., 100(3): 170–183. https://doi.org/10.1093/jnci/djm323.

Key, T.J. (2014). Nutrition, hormones and prostate cancer risk: results from the European prospective investigation into cancer and nutrition. Recent Results Cancer Res., 202: 39–46. https://doi.org/10.1007/978-3-642-45195-9_4.

Downloads

Abstract views: 22 / PDF downloads: 18

Published

2018-01-05

How to Cite

Mohammad, W. J., Hameedi, B. H., & Iberahim, N. A. K. (2018). Increased level of miRNA 30b-3p in patients with prostatic hyperplasia and testosterone with high-level of prostate-specific antigen. Advances in BioScience, 9(1), 9–14. Retrieved from https://journals.sospublication.co.in/ab/article/view/242

Issue

Section

Articles