Temperature effects on growth of the biocontrol agent Pantoea agglomerans (An oval isolate from Iraqi soils)


  • Zaid Raad Abbas Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.
  • Sawsan Hassan Authman Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.
  • Aqeel Mohammed Majeed Al-Ezee Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.


Biocontrol agent, Pantoea agglomerans, Iraqi soils


The growth response of the biocontrol agent Pantoea agglomerans to changes in temperature was determined in vitro in nutrient yeast extract-sucrose medium. The minimum temperature at which P. agglomerans was able to grow was 4°C and the maximum temperature was 42°C. This study defines the range of environmental condition (Temperature) over which the bacteria may be developed for biocontrol of postharvest diseases.


Download data is not yet available.


Hong, C.X. & Moorman, G.W. (2005). Plant Pathogens in Irrigation Water: Challenges and Opportunities. Crit. Rev. Plant Sci., 24(3): 189–208. https://doi.org/10.1080/07352680591005838.

Han-Jen, R.E., Wai-Fong, Y. & Kok-Gan, C. (2013). Pandoraea sp. RB-44, a novel quorum sensing soil bacterium. Sensors, 13(10): 14121–14132. https://doi.org/10.3390/s131014121.

Jain, S., Bohra, I., Mahajan, R., Jain, S. & Chugh, T.D. (2012). Pantoea agglomerans infection behaving like a tumor after plant thorn injury: an unusual presentation. Indian J. Pathol. Microbiol., 55(3): 386–388. https://doi.org/10.4103/0377-4929.101754.

Sturz, A.V., Christie, B.R. & Nowak, J. (2000). Bacterial Endophytes: Potential Role in Developing Sustainable Systems of Crop Production. Crit. Rev. Plant Sci., 19(1): 1–30. https://doi.org/10.1080/07352680091139169.

Chale-Matsau, J.R. & Snyman, H.G. (2006). The survival of pathogens in soil treated with wastewater sludge and in potatoes grown in such soil. Water Sci. Technol., 54(5): 163–168. https://doi.org/10.2166/wst.2006.559.

Yamakawa, O. (1998). Development of new cultivation and utilization system for sweet potato toward the 21th century. In: LaBonte, D.R., Yamashita, M. & Mochida, H. (eds.), Proceedings of International Workshop on Sweet Potato System toward the 21th Century. 9-10 December 1997, Miyakonojo, Japan: Kyushu National Agricultural Experiment Station. pp. 1-8.

Csonka, L.N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev., 53(1): 121–147. https://doi.org/10.1128/mr.53.1.121-147.1989.

Yoneyama, T., Terakado, J. & Masuda, T. (1998). Possible input of N2-derived nitrogen in sweet potato: investigation by the δ15N dilution method. In: LaBonte, D.R., Yamashita, M. & Mochida, H. (eds.), Sweet potato Production System Toward the 21st Century, Miyakonojo: Kyushu National Experiment Station. pp. 311–316.

Viñas, I., Usall, J., Nunes, C. & Teixidó, N. (1999). Nueva cepa bacteriana Pantoea agglomerans; Beijerinck (1888) Gavini, Mergaert, Beji, Mielcareck, Izard, Kersters y, De Ley (1989) y su utilización como agente de control biológico de las enfermedades fÚngicas de fruta. Solicitud P9900612. Oficina Española de Patentes y Marcas.

Wilson, C.L. & Pusey, P.L. (1985). Potential for Biological Control of Postharvest Plant Diseases. Plant Dis., 69: 375–378. https://doi.org/10.1094/PD-69-375.

Atlas, R.M. (2010). Handbook of microbiological media. 4th Edition. CRC Press, Taylor and Francis Group. https://doi.org/10.1201/EBK1439804063.

Garrity, G.M., Brenner, D.J., Krieg, N.R. & Staley, J.T. (eds) (2005). Bergey's Manual of Systematic Bacteriology. vol. 2: The Proteobacteria, 2nd edn, Springer, New York. pp. 1168.

Tang, Y.W. & Stratton, C.W. (eds) (2006). Advanced Techniques in Diagnostic Microbiology. Springer, New York.

Costa, E., Teixidó, N., Usall, J., Atarés, E. & Viñas, I. (2001). Production of the biocontrol agent Pantoea agglomerans strain CPA-2 using commercial products and by-products. Appl. Microbiol. Biotechnol., 56: 367–371. https://doi.org/10.1007/s002530100666.

Jung, I., Park, D.H. & Park, K. (2002). A study of the growth condition and solubilization of phosphate from hydroxyapatite by Pantoea agglomerans. Biotechnol. Bioprocess Eng., 7(4): 201–205. https://doi.org/10.1007/BF02932970.

Teixidó, N., Usall, J., Palou, L., Asensio, A., Nunes, C. & Viñas, I. (2001). Improving Control of Green and Blue Molds of Oranges by Combining Pantoea Agglomerans (CPA-2) and Sodium Bicarbonate. Eur. J. Plant Pathol., 107(7): 685–694. https://doi.org/10.1023/A:1011962121067.

Rahman, M.M., Mubassara, S., Hoque, S. & Khan, Z.U.M. (2006). Effect of Some Environmental Factors on the Growth of Azospirillum Species Isolated from Saline Soils of Satkhira District, Bangladesh. Bangladesh J. Microbiol., 23(2): 145–148. https://doi.org/10.3329/bjm.v23i2.881.

Gould, G.W. (1989). Drying, raised osmotic pressure and low water activity. In: Gould, G.W. (ed.), Mechanisms of action of food preservation procedures. London: Elsevier Applied Science. pp. 97–118.

Nunes, C. (2001). Control biologico de las principales enfermedades fungicas en postcosecha de fruta de pepita, mediante el uso de candida sake (cpa-1) y pantoea agglomerans (cpa-2). Ph.D. Thesis, Universitat de Lleida, Spain.


Abstract views: 14 / PDF downloads: 7



How to Cite

Abbas, Z. R., Authman, S. H., & Al-Ezee, A. M. M. (2017). Temperature effects on growth of the biocontrol agent Pantoea agglomerans (An oval isolate from Iraqi soils). Advances in BioScience, 8(4), 85–88. Retrieved from https://journals.sospublication.co.in/ab/article/view/230