Temperature effects on growth of the biocontrol agent Pantoea agglomerans (An oval isolate from Iraqi soils)

Authors

  • Zaid Raad Abbas Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.
  • Sawsan Hassan Authman Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.
  • Aqeel Mohammed Majeed Al-Ezee Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.

Keywords:

Biocontrol agent, Pantoea agglomerans, Iraqi soils

Abstract

The growth response of the biocontrol agent Pantoea agglomerans to changes in temperature was determined in vitro in nutrient yeast extract-sucrose medium. The minimum temperature at which P. agglomerans was able to grow was 4°C and the maximum temperature was 42°C. This study defines the range of environmental condition (Temperature) over which the bacteria may be developed for biocontrol of postharvest diseases.

Downloads

Download data is not yet available.

References

Hong, C.X. & Moorman, G.W. (2005). Plant Pathogens in Irrigation Water: Challenges and Opportunities. Crit. Rev. Plant Sci., 24(3): 189–208. https://doi.org/10.1080/07352680591005838.

Han-Jen, R.E., Wai-Fong, Y. & Kok-Gan, C. (2013). Pandoraea sp. RB-44, a novel quorum sensing soil bacterium. Sensors, 13(10): 14121–14132. https://doi.org/10.3390/s131014121.

Jain, S., Bohra, I., Mahajan, R., Jain, S. & Chugh, T.D. (2012). Pantoea agglomerans infection behaving like a tumor after plant thorn injury: an unusual presentation. Indian J. Pathol. Microbiol., 55(3): 386–388. https://doi.org/10.4103/0377-4929.101754.

Sturz, A.V., Christie, B.R. & Nowak, J. (2000). Bacterial Endophytes: Potential Role in Developing Sustainable Systems of Crop Production. Crit. Rev. Plant Sci., 19(1): 1–30. https://doi.org/10.1080/07352680091139169.

Chale-Matsau, J.R. & Snyman, H.G. (2006). The survival of pathogens in soil treated with wastewater sludge and in potatoes grown in such soil. Water Sci. Technol., 54(5): 163–168. https://doi.org/10.2166/wst.2006.559.

Yamakawa, O. (1998). Development of new cultivation and utilization system for sweet potato toward the 21th century. In: LaBonte, D.R., Yamashita, M. & Mochida, H. (eds.), Proceedings of International Workshop on Sweet Potato System toward the 21th Century. 9-10 December 1997, Miyakonojo, Japan: Kyushu National Agricultural Experiment Station. pp. 1-8.

Csonka, L.N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev., 53(1): 121–147. https://doi.org/10.1128/mr.53.1.121-147.1989.

Yoneyama, T., Terakado, J. & Masuda, T. (1998). Possible input of N2-derived nitrogen in sweet potato: investigation by the δ15N dilution method. In: LaBonte, D.R., Yamashita, M. & Mochida, H. (eds.), Sweet potato Production System Toward the 21st Century, Miyakonojo: Kyushu National Experiment Station. pp. 311–316.

Viñas, I., Usall, J., Nunes, C. & Teixidó, N. (1999). Nueva cepa bacteriana Pantoea agglomerans; Beijerinck (1888) Gavini, Mergaert, Beji, Mielcareck, Izard, Kersters y, De Ley (1989) y su utilización como agente de control biológico de las enfermedades fÚngicas de fruta. Solicitud P9900612. Oficina Española de Patentes y Marcas.

Wilson, C.L. & Pusey, P.L. (1985). Potential for Biological Control of Postharvest Plant Diseases. Plant Dis., 69: 375–378. https://doi.org/10.1094/PD-69-375.

Atlas, R.M. (2010). Handbook of microbiological media. 4th Edition. CRC Press, Taylor and Francis Group. https://doi.org/10.1201/EBK1439804063.

Garrity, G.M., Brenner, D.J., Krieg, N.R. & Staley, J.T. (eds) (2005). Bergey's Manual of Systematic Bacteriology. vol. 2: The Proteobacteria, 2nd edn, Springer, New York. pp. 1168.

Tang, Y.W. & Stratton, C.W. (eds) (2006). Advanced Techniques in Diagnostic Microbiology. Springer, New York.

Costa, E., Teixidó, N., Usall, J., Atarés, E. & Viñas, I. (2001). Production of the biocontrol agent Pantoea agglomerans strain CPA-2 using commercial products and by-products. Appl. Microbiol. Biotechnol., 56: 367–371. https://doi.org/10.1007/s002530100666.

Jung, I., Park, D.H. & Park, K. (2002). A study of the growth condition and solubilization of phosphate from hydroxyapatite by Pantoea agglomerans. Biotechnol. Bioprocess Eng., 7(4): 201–205. https://doi.org/10.1007/BF02932970.

Teixidó, N., Usall, J., Palou, L., Asensio, A., Nunes, C. & Viñas, I. (2001). Improving Control of Green and Blue Molds of Oranges by Combining Pantoea Agglomerans (CPA-2) and Sodium Bicarbonate. Eur. J. Plant Pathol., 107(7): 685–694. https://doi.org/10.1023/A:1011962121067.

Rahman, M.M., Mubassara, S., Hoque, S. & Khan, Z.U.M. (2006). Effect of Some Environmental Factors on the Growth of Azospirillum Species Isolated from Saline Soils of Satkhira District, Bangladesh. Bangladesh J. Microbiol., 23(2): 145–148. https://doi.org/10.3329/bjm.v23i2.881.

Gould, G.W. (1989). Drying, raised osmotic pressure and low water activity. In: Gould, G.W. (ed.), Mechanisms of action of food preservation procedures. London: Elsevier Applied Science. pp. 97–118.

Nunes, C. (2001). Control biologico de las principales enfermedades fungicas en postcosecha de fruta de pepita, mediante el uso de candida sake (cpa-1) y pantoea agglomerans (cpa-2). Ph.D. Thesis, Universitat de Lleida, Spain.

Downloads

Abstract views: 20 / PDF downloads: 14

Published

2017-10-01

How to Cite

Abbas, Z. R., Authman, S. H., & Al-Ezee, A. M. M. (2017). Temperature effects on growth of the biocontrol agent Pantoea agglomerans (An oval isolate from Iraqi soils). Advances in BioScience, 8(4), 85–88. Retrieved from https://journals.sospublication.co.in/ab/article/view/230

Issue

Section

Articles