Fermentation Technology: Use of Various Cultures for Deracemisation of Secondary Alcohols


  • S. Dalal Department of Biotechnology, Kurukshetra University, Kurukshetra-132119, Haryana, India.
  • N. Raghav Department of Chemistry, Kurukshetra University, Kurukshetra-132119, Haryana, India.


Biocatalyst, Enantioselective synthesis, Stereoselective synthesis, Deracemisation, Fermentation technology


Enantioselective synthesis of secondary alcohols plays an important role in pharmaceuticals, pheromones, flavors and fragrances, etc. Biocatalysts has unique characteristics when compared with chemical (homogeneous and heterogeneous) catalysts. The present work provides a list of various cultures used for deracemisation/stereoselective synthesis of various natural and synthetic secondary alcohols.


Download data is not yet available.


Gröger, H. (2010). Enzyme-Catalyzed Asymmetric Synthesis. In: Ojima, I. (Ed.), Catalytic Asymmetric Synthesis. 3rd edn., John Wiley & Sons, Inc. pp. 269-341. https://doi.org/10.1002/9780470584248.ch6.

Faber, K. (2000). Biotransformations in Organic Chemistry: a textbook. 4th edn., Springer, New York. pp. 453.

Lehninger, A.L., Nelson, D.L. & Cox, M.M. (2008). Lehninger Principles of Biochemistry. 5th ed., W.H. Freeman and Co., New York.

Collins, A.N., Sheldrake, G.N. & Crosby, J. (1997). Chirality in Industry II: Developments in the Commercial Manufacture and Applications of Optically Active Compounds. John Wiley & Sons, Chichester. pp. 418.

Prelog, V. (1964). Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl. Chem., 9(1): 119–130. http://dx.doi.org/10.1351/pac196409010119.

Faber, K. (1997). Biotransformations in organic chemistry. A textbook. 3rd ed., Springer-Verlag, Berlin. pp. 402.

Fantin, G., Fogagnolo, M., Giovannini, P.P., Medici, A. & Pedrini, P. (1995). Combined microbial oxidation and reduction: a new approach to the highyield synthesis of homochiral unsaturated secondary alcohols from racemates. Tetrahedron: Asymmetry, 6(12): 3047–3053. https://doi.org/10.1016/0957-4166(95)00402-5.

Fantin, G., Fogagnolo, M., Medici, A., Pedrini, P. & Fontana, S. (2000). Kinetic resolution of racemic secondary alcohols via oxidation with Yarrowia lipolytica strains. Tetrahedron: Asymmetry, 11(11): 2367–2373. https://doi.org/10.1016/S0957-4166(00)00185-3.

Tsuchiya, S., Miyamoto, K. & Ohta, H. (1992). Highly efficient conversion of (±)-mandelic acid to its (R)-(−)-enantiomer by combination of enzyme-mediated oxidation and reduction. Biotechnol. Lett., 14(12): 1137–1142. https://doi.org/10.1007/BF01027017.

Takahashi, E., Nakamichi, K. & Furui, M. (1995). R-(−)-mandelic acid production from racemic mandelic acids using Pseudomonas polycolor IFO 3918 and Micrococcus freudenreichii FERM-P 13221. J. Ferment. Bioeng., 80(3): 247–250. https://doi.org/10.1016/0922-338X(95)90824-J.

Lanzilotta, R.P., Bradley, D.G. & McDonald, K.M. (1974). Microbial reduction of ketopantoyl lactone to pantoyl lactone. Appl. Microbiol., 27(1): 130–134. https://doi.org/10.1128/am.27.1.130-134.1974.

Shimizu, S., Hattori, S., Hata, H. & Yamada, H. (1987). One-Step Microbial Conversion of a Racemic Mixture of Pantoyl Lactone to Optically Active d-(—)-Pantoyl Lactone. Appl. Environ. Microbiol., 53(3): 519–522. https://doi.org/10.1128/aem.53.3.519-522.1987.

Shimizu, S., Hattori, S., Hata, H. & Yamada, H. (1987). Stereoselective enzymatic oxidation and reduction system for the production of d(−)-pantoyl lactone from a racemic mixture of pantoyl lactone. Enzyme Microb. Technol., 9(7): 411–416. https://doi.org/10.1016/0141-0229(87)90136-0.

Takemoto, M. & Achiwa, K. (1995). The synthesis of optically active pyridyl alcohols from the corresponding racemates by Catharanthus roseus cell cultures. Tetrahedron: Asymmetry, 6(12): 2925–2928. https://doi.org/10.1016/0957-4166(95)00388-6.

Hasegawa, J., Ogura, M., Tsuda, S., Maemoto, S.-i., Kutsuki, H. & Ohashi, T. (1990). High-yield Production of Optically Active 1,2-Diols from the Corresponding Racemates by Microbial Stereoinversion. Agric. Biol. Chem., 54(7): 1819–1827. https://doi.org/10.1080/00021369.1990.10870226.

Matsumura, S., Kawai, Y., Takahashi, Y. & Toshima, K. (1994). Microbial production of (2R, 4R)-2,4-pentanediol by enatioselective reduction of acetylacetone and stereoinversion of 2,4-pentanediol. Biotechnol. Lett., 16(5): 485–490. https://doi.org/10.1007/BF01023330.

Carnell, A.J., Iacazio, G., Roberts, S.M. & Willetts, A.J. (1994). Preparation of optically active cyclohexanediols and (+)-α- hydroxycycloheptanone by an enzyme catalysed stereoinversion/oxidation process. Tetrahedron Lett., 35(2): 331–334. https://doi.org/10.1016/S0040-4039(00)76545-2.

Goswami, A., Mirfakhrae, K.D. & Patel, R.N. (1999). Deracemization of racemic 1,2-diol by biocatalytic stereoinversion. Tetrahedron: Asymmetry, 10(21): 4239–4244. https://doi.org/10.1016/S0957-4166(99)00452-8.

Nakamura, K., Kitano, K., Matsuda, T. & Ohno, A. (1996). Asymmetric reduction of ketones by the acetone powder of Geotrichum candidum. Tetrahedron Lett., 37(10): 1629–1632. https://doi.org/10.1016/0040-4039(96)00073-1.

Asakawa, Y. & Noma, Y. (2010). Biotransformation of Di- and Triterpenoids, Steroids, and Miscellaneous Synthetic Substrates. Compr. Nat. Prod. II Chem. Biol., 3: 893-965. https://doi.org/10.1016/B978-008045382-8.00073-3.

Chai, W., Hamada, H., Suhara, J. & Akira Horiuchi, C. (2001). Biotransformation of (+)- and (−)-camphorquinones by plant cultured cells. Phytochemistry, 57(5): 669–673. https://doi.org/10.1016/S0031-9422(01)00133-9.

Ogawa, J., Xie, S.-X. & Shimizu, S. (1999). Stereoinversion of optically active 3-pentyn-2-ol by Nocardia species. Biotechnol. Lett., 21(4): 331–335. https://doi.org/10.1023/A:1005484731976.

Salokhe, P.R., Rashinkar, G.S. & Salunkhe, R.S. (2010). Enantioselective synthesis of diarylmethanols using microbial transformation. Indian J. Chem., 49: 199-202.


Abstract views: 25 / PDF downloads: 10



How to Cite

Dalal, S., & Raghav, N. (2010). Fermentation Technology: Use of Various Cultures for Deracemisation of Secondary Alcohols. Advances in BioScience, 1(2), 134–137. Retrieved from https://journals.sospublication.co.in/ab/article/view/16