Effects of Neonatal Stress on Ovarian Follicular Reserve and Initial Follicular Waves in Rats


  • Manjula S. Bhat Department of Zoology, University of Mysore, Manasagangotri, Mysore-570 006, India.
  • H. N. Yajurvedi Department of Zoology, University of Mysore, Manasagangotri, Mysore-570 006, India.


Maternal Separation, Neonatal Stress, Follicular Reserve


The study tested the hypothesis that stress experienced during neonatal life alters follicular reserve and onset of initial follicular waves. Rat pups immediately after their birth (postnatal day 1) were randomly segregated into three groups and the first group pups were autopsied on postnatal day 1, second group served as controls and those in third group were exposed to a stressor (maternal separation 6 hours/ day) from postnatal day 1 to 3. Five pups in control and stress group were autopsied on postnatal day 4, 6 and 8. There was a significant increase in blood corticosterone level in stressed rats on postnatal day 4. Neonatal stress did not delay the timing of folliculogenesis and onset of initial follicular waves. However, mean number of oocytes, primordial and primary follicles on postnatal day 4, 6 and 8 was significantly lower in stressed rats compared to controls. Reduction in follicular number was due to increased rate of atresia which was assessed by TUNEL and caspase-3 assay. The results, for the first time, reveal that neonatal stress has dire consequence as it reduces the number of oocytes and primordial follicles (follicular reserve) which might curtail the reproductive lifespan of neonatally stressed rats.


Download data is not yet available.


Warren, M.P. & Perlroth, N.E. (2001). The effects of intense exercise on the female reproductive system. J. Endocrinol., 170(1): 3–11. https://doi.org/10.1677/joe.0.1700003.

Singh, D., Sharma, M.K. & Pandey, R.S. (1999). Biochemical and hormonal characterization of follicles from follicular and luteal phase ovaries of goat and sheep. Indian J. Exp. Biol., 37(5): 434–438.

Armstrong, D.T. (1986). Environmental stress and ovarian function. Biol. Reprod., 34(1): 29–39. https://doi.org/10.1095/biolreprod34.1.29.

D'Agostino, J., Valadka, R.J. & Schwartz, N.B. (1990). Differential effects of in vitro glucocorticoids on luteinizing hormone and follicle-stimulating hormone secretion: dependence on sex of pituitary donor. Endocrinology, 127(2): 891–899. https://doi.org/10.1210/endo-127-2-891.

Brann, D.W., Putnam, C.D. & Mahesh, V.B. (1990). Corticosteroid regulation of gonadotropin and prolactin secretion in the rat. Endocrinology, 126(1): 159–166. https://doi.org/10.1210/endo-126-1-159.

Brann, D.W., Putnam, C.D. & Mahesh, V.B. (1990). Corticosteroid regulation of gonadotropin secretion and induction of ovulation in the rat. Proc. Soc. Exp. Biol. Med., 193(3): 176–180. https://doi.org/10.3181/00379727-193-43021.

Brann, D.W., Putnam, C.D. & Mahesh, V.B. (1991). Validation of the mechanisms proposed for the stimulatory and inhibitory effects of progesterone on gonadotropin secretion in the estrogen-primed rat: a possible role for adrenal steroids. Steroids, 56(2): 103–111. https://doi.org/10.1016/0039-128X(91)90132-F.

Khan, K.S., Chien, P.F. & Khan, N.B. (1998). Nutritional stress of reproduction, A cohort study over two consecutive pregnancies. Acta Obstet. Gynecol. Scand., 77(4): 395–401. https://doi.org/10.1034/j.1600-0412.1998.770407.x.

Al-Katanani, Y.M., Paula-Lopes, F.F. & Hansen, P.J. (2002). Effect of season and exposure to heat stress on oocyte competence in Holstein cows. J. Dairy Sci., 85(2): 390–396. https://doi.org/10.3168/jds.s0022-0302(02)74086-1.

Dobson, H., Ghuman, S., Prabhakar, S. & Smith, R. (2003). A conceptual model of the influence of stress on female reproduction. Reproduction, 125(2): 151–163. https://doi.org/10.1530/rep.0.1250151.

Kongsted, A.G. (2004). Stress and fear as possible mediators of reproduction problems in group housed sows: a review. Acta Agric. Scand. A Anim. Sci., 54(2): 58–66. https://doi.org/10.1080/09064700410032031.

Agarwal, A., Gupta, S. & Sharma, R.K. (2005). Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol., 3: 28. https://doi.org/10.1186/1477-7827-3-28.

Nepomnaschy, P.A., Sheiner, E., Mastorakos, G. & Arck, P.C. (2007). Stress, immune function, and women's reproduction. Ann. N. Y. Acad. Sci., 1113: 350–364. https://doi.org/10.1196/annals.1391.028.

von Borell, E., Dobson, H. & Prunier, A. (2007). Stress, behaviour and reproductive performance in female cattle and pigs. Horm. Behav., 52(1): 130–138. https://doi.org/10.1016/j.yhbeh.2007.03.014.

Bolocan, E. (2009). Effects of heat stress on sexual behavior in heifers. Sci. Papers Anim. Sci. Biotechnol., 42(1): 141-148.

Badinga, L., Thatcher, W.W., Diaz, T., Drost, M. & Wolfenson, D. (1993). Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows. Theriogenology, 39(4): 797–810. https://doi.org/10.1016/0093-691x(93)90419-6.

Jordan, E.R. (2003). Effects of Heat Stress on Reproduction. J. Dairy Sci., 86: E104–E114. https://doi.org/10.3168/jds.S0022-0302(03)74043-0.

Wolfenson, D., Thatcher, W.W., Badinga, L., Savio, J.D., Meidan, R., Lew, B.J., Braw-Tal, R. & Berman, A. (1995). Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod., 52(5): 1106–1113. https://doi.org/10.1095/biolreprod52.5.1106.

Ozawa, M., Tabayashi, D., Latief, T.A., Shimizu, T., Oshima, I. & Kanai, Y. (2005). Alterations in follicular dynamics and steroidogenic abilities induced by heat stress during follicular recruitment in goats. Reproduction, 129(5): 621–630. https://doi.org/10.1530/rep.1.00456.

Edwards, L.M., Rahe, C.H., Griffin, J.L., Wolfe, D.F., Marple, D.N., Cummins, K.A. & Pitchett, J.F. (1987). Effect of transportation stress on ovarian function in superovulated Hereford heifers. Theriogenology, 28(3): 291–299. https://doi.org/10.1016/0093-691x(87)90016-1.

Smith, E.R., Johnson, J., Weick, R.F., Levine, S. & Davidson, J.M. (1971). Inhibition of the reproductive system in immature rats by intracerebral implantation of cortisol. Neuroendocrinology, 8(2): 94–106. https://doi.org/10.1159/000121997.

Baldwin, D.M. & Sawyer, C.H. (1974). Effects of dexamethasone on LH release and ovulation in the cyclic rat. Endocrinology, 94(5): 1397–1403. https://doi.org/10.1210/endo-94-5-1397.

Baldwin, D.M. (1979). The effect of glucocorticoids on estrogen-dependent luteinizing hormone release in the ovariectomized rat and on gonadotropin secretin in the intact female rat. Endocrinology, 105(1): 120–128. https://doi.org/10.1210/endo-105-1-120.

Cunningham, G.R., Goldzieher, J.W., de la Pena, A. & Oliver, M. (1978). The mechanism of ovulation inhibition by triamcinolone acetonide. J. Clin. Endocrinol. Metab., 46(1): 8–14. https://doi.org/10.1210/jcem-46-1-8.

Hayashi, K.T. & Moberg, G.P. (1990). Influence of the hypothalamic-pituitary-adrenal axis on the menstrual cycle and the pituitary responsiveness to estradiol in the female rhesus monkey (Macaca mulatta). Biol. Reprod., 42(2): 260–265. https://doi.org/10.1095/biolreprod42.2.260.

Barb, C.R., Kraeling, R.R., Rampacek, G.B., Fonda, E.S. & Kiser, T.E. (1982). Inhibition of ovulation and LH secretion in the gilt after treatment with ACTH or hydrocortisone. J. Reprod. Fertil., 64(1): 85–92. https://doi.org/10.1530/jrf.0.0640085.

Stoebel, D.P. & Moberg, G.P. (1982). Effect of adrenocorticotropin and cortisol on luteinizing hormone surge and estrous behavior of cows. J. Dairy Sci., 65(6): 1016–1024. https://doi.org/10.3168/jds.S0022-0302(82)82303-5.

Daley, C.A., Macfarlane, M.S., Sakurai, H. & Adams, T.E. (1999). Effect of stress-like concentrations of cortisol on follicular development and the preovulatory surge of LH in sheep. J. Reprod. Fertil., 117(1): 11–16. https://doi.org/10.1530/jrf.0.1170011.

Coutinho, S.V., Plotsky, P.M., Sablad, M., Miller, J.C., Zhou, H., Bayati, A.I., McRoberts, J.A. & Mayer, E.A. (2002). Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am. J. Physiol. Gastrointest. Liver Physiol., 282(2): G307–G316. https://doi.org/10.1152/ajpgi.00240.2001.

Hofer, M.A. (1975). Studies on how early maternal separation produces behavioral change in young rats. Psychosom. Med., 37(3): 245–264. https://doi.org/10.1097/00006842-197505000-00003.

Pellerin-Massicotte, J., Brisson, G.R., St-Pierre, C., Rioux, P. & Rajotte, D. (1987). Effect of exercise on the onset of puberty, gonadotropins, and ovarian inhibin. J. Appl. Physiol, 63(3): 1165–1173. https://doi.org/10.1152/jappl.1987.63.3.1165.

Lau, C., Klinefelter, G. & Cameron, A.M. (1996). Reproductive development and functions in the rat after repeated maternal deprivation stress. Fundam. Appl. Toxicol., 30(2): 298–301. https://doi.org/10.1006/faat.1996.0068.

Smith, J.T. & Waddell, B.J. (2000). Increased fetal glucocorticoid exposure delays puberty onset in postnatal life. Endocrinology, 141(7): 2422–2428. https://doi.org/10.1210/endo.141.7.7541.

Pedersen, T. & Peters, H. (1968). Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil., 17(3): 555–557. https://doi.org/10.1530/jrf.0.0170555.

Feranil, J., Isobe, N. & Nakao, T. (2005). Apoptosis in the antral follicles of swamp buffalo and cattle ovary: TUNEL and caspase-3 histochemistry. Reprod. Domest. Anim., 40(2): 111–116. https://doi.org/10.1111/j.1439-0531.2005.00563.x.

Ferin, M. (1999). Clinical review 105: Stress and the reproductive cycle. J. Clin. Endocrinol. Metab., 84(6): 1768–1774. https://doi.org/10.1210/jcem.84.6.5367.

Kapoor, A., Dunn, E., Kostaki, A., Andrews, M.H. & Matthews, S.G. (2006). Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J. Physiol., 572: 31–44. https://doi.org/10.1113/jphysiol.2006.105254.

Romeo, R.D., Bellani, R., Karatsoreos, I.N., Chhua, N., Vernov, M., Conrad, C.D. & McEwen, B.S. (2006). Stress history and pubertal development interact to shape hypothalamic-pituitary-adrenal axis plasticity. Endocrinology, 147(4): 1664–1674. https://doi.org/10.1210/en.2005-1432.

Rhees, R.W., Lephart, E.D. & Eliason, D. (2001). Effects of maternal separation during early postnatal development on male sexual behavior and female reproductive function. Behav. Brain Res., 123(1): 1–10. https://doi.org/10.1016/s0166-4328(00)00381-8.

Kwak, H.R., Lee, J.W., Kwon, K.J., Kang, C.D., Cheong, I.Y., Chun, W., Kim, S.S. & Lee, H.J. (2009). Maternal social separation of adolescent rats induces hyperactivity and anxiolytic behavior. Korean J. Physiol. Pharmacol., 13(2): 79–83. https://doi.org/10.4196/kjpp.2009.13.2.79.

Wilber, A.A., Southwood, C.J., Sokoloff, G., Steinmetz, J.E. & Wellman, C.L. (2007). Neonatal maternal separation alters adult eyeblink conditioning and glucocorticoid receptor expression in the interpositus nucleus of the cerebellum. Dev. Neurobiol., 67(13): 1751–1764. https://doi.org/10.1002/dneu.20549.

Carr, J.A. & Norris, D.O. (2005). The Adrenal Glands. In: Norris, D.O. & Carr, J.A. (Eds), Endocrine Disruption: Biological Basis for Health Effects in Wildlife and Humans. Oxford University Press, NY, pp. 111-134.

Peters, H. & McNatty, K.P. (1980). The Ovary: A Correlation of Structure and Function in Mammals. University of California Press, Berkeley, CA.

Greenwald, G.S. & Roy, S. (1994). Follicular development and its control. In: Knobil, E. & Neill, J.D. (eds.), The Physiology of Reproduction. New York: Raven Press, pp. 629–724.

McGee, E.A. & Hsueh, A.J. (2000). Initial and cyclic recruitment of ovarian follicles. Endocr. Rev., 21(2): 200–214. https://doi.org/10.1210/edrv.21.2.0394.

Guigon, C.J., Mazaud, S., Forest, M.G., Brailly-Tabard, S., Coudouel, N. & Magre, S. (2003a). Unaltered development of the initial follicular waves and normal pubertal onset in female rats after neonatal deletion of the follicular reserve. Endocrinology, 144(8): 3651–3662. https://doi.org/10.1210/en.2003-0072.

Guigon, C.J., Mazaud, S., Forest, M.G., Brailly-Tabard, S. & Magre, S. (2003b). Role of the first waves of growing follicles in rat ovarian maturation. Ann. Endocrinol., 64(2): 85.

Mazaud, S., Guigon, C.J., Lozach, A., Coudouel, N., Forest, M.G., Coffigny, H. & Magre, S. (2002). Establishment of the Reproductive Function and Transient Fertility of Female Rats Lacking Primordial Follicle Stock after Fetal γ-Irradiation. Endocrinology, 143(12): 4775–4787. https://doi.org/10.1210/en.2002-220464.

Zuckerman, S. (1951). The number of oocytes in the mature ovary. Recent Prog. Horm. Res., 6: 63-109.

Borum, K. (1961). Oogenesis in the mouse: A study of the meiotic prophase. Exp. Cell Res., 24(3): 495–507. https://doi.org/10.1016/0014-4827(61)90449-9.

Peters, H. (1970). Migration of gonocytes into the mammalian gonad and their differentiation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 259: 91–101. https://doi.org/10.1098/rstb.1970.0048.

McLaren, A. (1984). Meiosis and differentiation of mouse germ cells. Symp. Soc. Exp. Biol., 38: 7–23.

Anderson, L.D. & Hirshfield, A.N. (1992). An overview of follicular development in the ovary: from embryo to the fertilized ovum in vitro. Md. Med. J., 41(7): 614–620.

Bristol-Gould, S.K., Kreeger, P.K., Selkirk, C.G., Kilen, S.M., Mayo, K.E., Shea, L.D. & Woodruff, T.K. (2006). Fate of the initial follicle pool: empirical and mathematical evidence supporting its sufficiency for adult fertility. Dev. Biol., 298(1): 149–154. https://doi.org/10.1016/j.ydbio.2006.06.023.

Eggan, K., Jurga, S., Gosden, R., Min, I.M. & Wagers, A.J. (2006). Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature, 441: 1109–1114. https://doi.org/10.1038/nature04929.

Durlinger, A.L., Kramer, P., Karels, B., Grootegoed, J.A., Uilenbroek, J.T. & Themmen, A.P. (2000). Apoptotic and proliferative changes during induced atresia of pre-ovulatory follicles in the rat. Hum. Reprod., 15(12): 2504–2511. https://doi.org/10.1093/humrep/15.12.2504.

Roth, Z. & Hansen, P.J. (2004a). Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol. Reprod., 71(6): 1898–1906. https://doi.org/10.1095/biolreprod.104.031690.

Roth, Z. & Hansen, P.J. (2004b). Sphingosine 1-phosphate protects bovine oocytes from heat shock during maturation. Biol. Reprod., 71(6): 2072–2078. https://doi.org/10.1095/biolreprod.104.031989.

Soto, P. & Smith, L.C. (2009). BH4 peptide derived from Bcl-xL and Bax-inhibitor peptide suppresses apoptotic mitochondrial changes in heat stressed bovine oocytes. Mol. Reprod. Dev., 76(7): 637–646. https://doi.org/10.1002/mrd.20986.

Hansen, P.J. (2009). Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. Lond. B Biol. Sci., 364: 3341–3350. https://doi.org/10.1098/rstb.2009.0131.

Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature, 407: 770–776. https://doi.org/10.1038/35037710.

Markström, E., Svensson, E., Shao, R., Svanberg, B. & Billig, H. (2002). Survival factors regulating ovarian apoptosis - dependence on follicle differentiation. Reproduction, 123(1): 23–30. https://doi.org/10.1530/rep.0.1230023.

Nicholson, D.W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ., 6: 1028–1042. https://doi.org/10.1038/sj.cdd.4400598.

Yacobi, K., Wojtowicz, A., Tsafriri, A. & Gross, A. (2004). Gonadotropins enhance caspase-3 and -7 activity and apoptosis in the theca-interstitial cells of rat preovulatory follicles in culture. Endocrinology, 145(4): 1943–1951. https://doi.org/10.1210/en.2003-1395.

Matikainen, T., Perez, G.I., Zheng, T.S., Kluzak, T.R., Rueda, B.R., Flavell, R.A. & Tilly, J.L. (2001). Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary. Endocrinology, 142(6): 2468–2480. https://doi.org/10.1210/endo.142.6.8078.


Abstract views: 26 / PDF downloads: 8



How to Cite

Bhat, M. S., & Yajurvedi, H. N. (2011). Effects of Neonatal Stress on Ovarian Follicular Reserve and Initial Follicular Waves in Rats. Advances in BioScience, 2(4), 146–153. Retrieved from https://journals.sospublication.co.in/ab/article/view/55