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Abstract: Enantioselective synthesis of secondary alcohols plays an important role in pharmaceuticals, pheromones, 
flavors and fragrances, etc. Biocatalysts has unique characteristics when compared with chemical (homogeneous and 
heterogeneous) catalysts. The present work provides a list of various cultures used for deracemisation/stereoselective 
synthesis of various natural and synthetic secondary alcohols. 
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1. Introduction 

 
Development of efficient methods for the synthesis 

of enantiomerically pure chiral compounds is of 
tremendous importance. It has been reported that in the 
year 2004, nine out of ten top drugs contained 
enantiomerically pure compounds [1]. The requirement 
of one of the stereospecific products is because it 
interacts with biological molecules that are highly 
specific in action. The requirement of enantiomerically 
pure chiral compounds is not only in the field of 
pharmaceutics, but also is of great importance in the 
field of flavor and aroma chemicals, agriculture and 
specialty materials [2].  

Over the past decades, biocatalysis have been 
recognized as a highly valuable tool for organic 
chemists and microbiologists to prepare 
enantiomerically pure molecules. Among the various 
strategies for the synthesis of chiral molecules, use of 
chiral catalysts is an important and efficient technique 
and in enzyme-catalyzed enantioselective synthesis, 
these biological catalysts are the recently used ones. In 
addition, biocatalysis is relatively a green technology, 
as enzyme-catalyzed reactions can be carried out in 
aqueous medium at ambient temperature and neutral pH 
under atmospheric pressure and extreme conditions are 

also not required thus energy is saved. Moreover, the 
by-products are also not formed and the reaction is 
proceeding at an extremely high rate, maybe up to the 
order of 1020 [3]. It has proven to be a useful 
technology for the chemical industry for the reactions 
not easily feasible in organic chemistry. These days, 
highly stereo-, regio- and chemoselective 
biotransformations result in economically attractive, 
environmentally acceptable and simplified 
manufacturing processes. Enzymes have been 
efficiently used for resolution of racemic mixtures, 
although might not have competed well with chemical 
methods in synthesis. Phenylethylamine and ibuprofen 
are commonly cited compounds prepared using 
enzyme-based chiral processes. The use of pure 
enzymes requires additional steps that may further 
complicate the situation, therefore; there is an emerging 
trend for the use of microbes as a whole for the 
synthesis of enantiomerically pure compounds. Though, 
the story of microbial biotransformation has been 
associated with mankind since long and dates back to 
around 2000 years BC for the production of vinegar. It 
is the oldest, best-known examples of oxidations carried 
out by microbes. Pasteur in 1958 was the first to 
demonstrate the microbial resolution of tartaric acid. 
Ammonium salt of tartaric acid was resolved with the 
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help of mold Penicillium glaucum. Pasteur’s 
investigation for the conversion of alcohol into vinegar, 
also confirmed by Brown was also reported back in the 
nineteenth century, where the causative organism was 
named Bacterium xylinum. 

 
2. Biocatalyst 
 

Biocatalysts differ from chemical catalysts in many 
positive ways, viz. selectivity (strict recognition of the 
substrate with very high enantio-, regio- and 
chemoselectivities); safety (since reaction conditions 
are mild, the solvent is water, while ethanol and 
glucose, etc. are used as hydrogen sources instead of 
explosive hydrogen gas); natural and environmentally 
usable (biocatalysts include: microorganisms, plants, 
animals or their isolated enzymes so can be easily 
decomposed in the environment after use). 
Commercially available biocatalysts are easily available 
or can be cultured easily, including baker’s yeast and 
the alcohol dehydrogenases from baker’s yeast, 
Thermoanaerobium brockii (TBADH), horse liver and 
the hydroxysteroid dehydrogenase from Pseudomonas 
testosterone and Bacillus sphaericus. 

Biocatalysts can perform a reduction in non-
aqueous solvents like ionic liquids, organic solvents 

like benzene, cyclodextrin and hydrophobic polymers 
as well. It can be used to control the enantioselectivities 
as well as to improve the system’s environmental 
friendliness. For example, the alcohol dehydrogenase 
from G. candidum was used in supercritical CO2 around 
100 atm and 35°C and found to catalyze the reduction 
of fluoroacetophenones. In some cases, there could be 
competing enzymes with different enantioselectivities, 
in such condition, an inhibitor of the unnecessary 
enzyme(s) like allyl bromide, ethyl chloroacetate, allyl 
alcohol, methyl vinyl ketone, sulfur compounds, Mg2+ 
and Ca2+ etc. could be used. 

 
3. Enantioselective Reductions 

 
Enantiomerically pure secondary alcohols are 

important intermediates for the synthesis of 
pharmaceuticals, agrochemicals, pheromones, flavors 
and fragrances, liquid crystals and chiral auxiliaries in 
asymmetric synthesis [4]. Enzymatic reductions also go 
via prologs rule [5], but there are incidences where anti 
pre logs product is formed [6]. The present study is a 
compendium of work carried out by combining 
sequential oxidation reductions by the use of microbes 
to access a range of secondary alcohols from racemates 
[Table 1]. 

 
Table 1. 

 
Microorganism / Cultures Reactions catalysed References 

Bacillus stearothermophilus, 
 

Yarrowia lipolytica 

R

O

R

OH  
 

, , Ph-R=
 

 

[7] & [8] 

Alcaligenes bronchisepticus, 
Streptococcus faecalis Ph COOH

OH

Ph COOH

OH
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Pseudomonas polycolor, 
Micrococcus freudenreichii Ph COOH

OH

Ph COOH

OH
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Byssochlamys fulva 

O

O

O O O
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Rhodococcus erythropolis 
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N. asteroides, 
Candida parapsilosis 
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[13] 

Catharanthus roseus 
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[14] 

Candida parapsilosis 
OH

OH
OH

OH  
 

[15] 
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Candida boidinii 
OH OHOH OHOH

 

[16] 

Corynespora cassiicola 
 

Candida and Pichia spps. 

OH

OH

OH

OH  
1,2-diols 

 

[17] & [18] 

Corynespora cassiicola 
OH OH

OHOH
 

[13] 

Geotrichum candidum 

R

O

R

OH  
R=Aryl gp 

 

[19] 

Various bacteria, fungi, and 
mammalian cultures Diterpenoids, triterpenoids, steroids and synthetic substrates [20] 

Nicotiana tabacum and 
Catharanthus roseus Camphorquinones → α-ketoalcohols [21] 

Nocardia pseudosporangifera 
 

Nocardia fusca 

OH OH

 
 

OH OH

 
 

[22] 

Rhizopus arrhizus Diarylketone → Diarylmethanol [23] 
 

4. Conclusion 
 

The production of single enantiomer of various 
intermediates is increasingly important in the 
pharmaceutical and other industries. Organic synthesis 
is one approach for the synthesis of single enantiomer, 
but the process may be more complicated. Use of 
biocatalysts provides another dimension for the 
synthesis of chiral compounds. The resulting 
advantages of two catalysts over chemical catalysis are 
stereo- and regioselectivity. Moreover, it is also an 
aspect of green chemistry, another emerging trend in 
synthetic chemistry to achieve environmentally friendly 
processes. Different classes of enzymes provide 
stereospecificity to different types of reactions, may it 
be the resolution of racemic compounds or in the 
asymmetric synthesis of enantiomerically rich chiral 
compounds. Oxidoreductases have been used in the 
synthesis of chiral alcohols. 

Recently, biological catalysts in the form of whole 
cells have also been shown to be extremely 
stereoselective in the synthesis of secondary alcohols. 
The reduction yield high regio- and stereoselectivity 
that is difficult to be achieved with chemical catalyst. 
The need is to identify the particular cultures that will 
be reaction specific. 
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